Normalized defining polynomial
\( x^{36} - 2 x^{33} + 9 x^{30} - 3470 x^{27} - 11512 x^{24} + 72093 x^{21} + 3859957 x^{18} + 25621008 x^{15} + 191238344 x^{12} - 934302955 x^{9} - 4945223862 x^{6} + 7417705475 x^{3} + 128100283921 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{18} - \frac{1}{2}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{19} - \frac{1}{2} a$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{20} - \frac{1}{2} a^{2}$, $\frac{1}{129448595712742} a^{30} - \frac{7310675833877}{129448595712742} a^{27} - \frac{25051473094306}{64724297856371} a^{24} - \frac{53501000169051}{129448595712742} a^{21} - \frac{50804809027809}{129448595712742} a^{18} - \frac{9967054891810}{64724297856371} a^{15} + \frac{4369078997463}{64724297856371} a^{12} + \frac{11034726749462}{64724297856371} a^{9} + \frac{386813949247}{1578641411131} a^{6} - \frac{25517780561597}{129448595712742} a^{3} - \frac{48912882147447}{129448595712742}$, $\frac{1}{9190850295604682} a^{31} - \frac{1949039611525007}{9190850295604682} a^{28} - \frac{348672962376161}{4595425147802341} a^{25} - \frac{1736332744434697}{9190850295604682} a^{22} + \frac{1373129743812353}{9190850295604682} a^{19} - \frac{980831522737375}{4595425147802341} a^{16} - \frac{837046793135360}{4595425147802341} a^{13} + \frac{1176072088164140}{4595425147802341} a^{10} + \frac{43010132049784}{112083540190301} a^{7} + \frac{103930815151145}{9190850295604682} a^{4} + \frac{1504470266405457}{9190850295604682} a$, $\frac{1}{652550370987932422} a^{32} - \frac{21653932970873038}{326275185493966211} a^{29} - \frac{119829726805237027}{326275185493966211} a^{26} + \frac{200462373758868307}{652550370987932422} a^{23} - \frac{139473902136065224}{326275185493966211} a^{20} - \frac{5576256670539716}{326275185493966211} a^{17} - \frac{88150124601379839}{326275185493966211} a^{14} - \frac{76946155424475657}{326275185493966211} a^{11} + \frac{3293432797568513}{7957931353511371} a^{8} + \frac{27676481701965191}{652550370987932422} a^{5} + \frac{154698977584581152}{326275185493966211} a^{2}$, $\frac{1}{42184487737839498563233654737802910346562192433378} a^{33} - \frac{10167369085138129602687880588263434}{21092243868919749281616827368901455173281096216689} a^{30} - \frac{86701796967798254868650715344487435846151044513}{42184487737839498563233654737802910346562192433378} a^{27} - \frac{417216547380648518757576208884799382934046237051}{1028889944825353623493503774092753910891760791058} a^{24} + \frac{9536608039826812938267132645078858563559625244891}{21092243868919749281616827368901455173281096216689} a^{21} + \frac{4290995590944715318663085547677847364451155497915}{42184487737839498563233654737802910346562192433378} a^{18} + \frac{26637619305997283876504393779428993101297789494}{514444972412676811746751887046376955445880395529} a^{15} - \frac{5387994874118354928799339777515580503273518294807}{21092243868919749281616827368901455173281096216689} a^{12} + \frac{960825755531742027719338404476148922538878224958}{21092243868919749281616827368901455173281096216689} a^{9} - \frac{17673883929073943262623664005655988085010990898455}{42184487737839498563233654737802910346562192433378} a^{6} + \frac{555858085931792530076425562447050033909076826601}{21092243868919749281616827368901455173281096216689} a^{3} - \frac{18782924586960543412493912050336845429069161}{117863065784062234922183600777296340002297198}$, $\frac{1}{2995098629386604397989589486384006634605915662769838} a^{34} - \frac{10167369085138129602687880588263434}{1497549314693302198994794743192003317302957831384919} a^{31} + \frac{210835736892229694561299622973670064296964811122377}{2995098629386604397989589486384006634605915662769838} a^{28} + \frac{12958352735348948586657972854321001458658844046703}{73051186082600107268038767960585527673315016165118} a^{25} + \frac{494658217024981046415454162129812327549024838228738}{1497549314693302198994794743192003317302957831384919} a^{22} - \frac{375369394049610771750439807092548345754608576402487}{2995098629386604397989589486384006634605915662769838} a^{19} + \frac{7743312205496149460077782699475083324789503722429}{36525593041300053634019383980292763836657508082559} a^{16} + \frac{163349956077239639324135279173696060882975251438705}{1497549314693302198994794743192003317302957831384919} a^{13} + \frac{296252239920408231970354921569096521348474225258604}{1497549314693302198994794743192003317302957831384919} a^{10} - \frac{945732614161542911653764068237320015709379224432771}{2995098629386604397989589486384006634605915662769838} a^{7} - \frac{358012287685703945257409639708877687911869558857112}{1497549314693302198994794743192003317302957831384919} a^{4} + \frac{2927793720014595329642096107382071654628360789}{8368277670668418679475035655188040140163101058} a$, $\frac{1}{212652002686448912257260853533264471057020012056658498} a^{35} - \frac{10167369085138129602687880588263434}{106326001343224456128630426766632235528510006028329249} a^{32} + \frac{30161822030758273674457194486813736410356121438820757}{212652002686448912257260853533264471057020012056658498} a^{29} + \frac{451265469230949592194890580617834167498548941037411}{5186634211864607616030752525201572464805366147723378} a^{26} + \frac{25952996566811118429326964796393868721699307971772361}{106326001343224456128630426766632235528510006028329249} a^{23} + \frac{20590321011656620014176686597595498096486801062986379}{212652002686448912257260853533264471057020012056658498} a^{20} + \frac{1286139068650998026650756222009721817607802286611994}{2593317105932303808015376262600786232402683073861689} a^{17} - \frac{17807241820242386748613401639130343746752518725180323}{106326001343224456128630426766632235528510006028329249} a^{14} - \frac{31152283368638937946920334685462973142013640233824695}{106326001343224456128630426766632235528510006028329249} a^{11} + \frac{52966042714797336252158846686674799407197102705424313}{212652002686448912257260853533264471057020012056658498} a^{8} - \frac{31806547896245050124148099246740947351273984017940411}{106326001343224456128630426766632235528510006028329249} a^{5} + \frac{212134735486725062316517987487083075158705887239}{594147714617457726242727531518350849951580175118} a^{2}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{832586803845365017627085503572003000}{414489154357404428174590297036258875533616892163} a^{34} + \frac{554638973144463931969324545125793839}{20218983139385581862175136440793115879688628886} a^{31} - \frac{450887019376537579969011625144749094805}{828978308714808856349180594072517751067233784326} a^{28} - \frac{2076591941151950584096255650554816147845}{414489154357404428174590297036258875533616892163} a^{25} - \frac{128476164661073630741762224997662491720775}{828978308714808856349180594072517751067233784326} a^{22} + \frac{1347804113315114185757735286282274517480795}{828978308714808856349180594072517751067233784326} a^{19} + \frac{5392752704728647850682868649506474306034935}{414489154357404428174590297036258875533616892163} a^{16} + \frac{76587538860576402832642007426472296088908575}{414489154357404428174590297036258875533616892163} a^{13} - \frac{287068648385920482670036572140147467428450390}{414489154357404428174590297036258875533616892163} a^{10} - \frac{3265303264270640753750421431748561083285495895}{414489154357404428174590297036258875533616892163} a^{7} - \frac{106481302111343896331353240865684607449230705805}{828978308714808856349180594072517751067233784326} a^{4} + \frac{5852907936175899880968408561904729316195}{32621939049006984478877276716661040687046} a \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |