Normalized defining polynomial
\( x^{36} + 72 x^{34} + 2268 x^{32} + 41280 x^{30} + 483804 x^{28} + 3859488 x^{26} + 21644784 x^{24} + 87049728 x^{22} + 253983600 x^{20} + 540076864 x^{18} + 834837696 x^{16} + 928015488 x^{14} + 726219648 x^{12} + 385913088 x^{10} + 131300352 x^{8} + 25943040 x^{6} + 2509056 x^{4} + 82944 x^{2} + 512 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{16} a^{19}$, $\frac{1}{32} a^{20}$, $\frac{1}{32} a^{21}$, $\frac{1}{32} a^{22}$, $\frac{1}{32} a^{23}$, $\frac{1}{64} a^{24}$, $\frac{1}{64} a^{25}$, $\frac{1}{64} a^{26}$, $\frac{1}{64} a^{27}$, $\frac{1}{128} a^{28}$, $\frac{1}{128} a^{29}$, $\frac{1}{128} a^{30}$, $\frac{1}{128} a^{31}$, $\frac{1}{256} a^{32}$, $\frac{1}{256} a^{33}$, $\frac{1}{297759589389948674706983682304} a^{34} + \frac{752806421719491764250795}{74439897347487168676745920576} a^{32} - \frac{267462755570500681269572343}{148879794694974337353491841152} a^{30} + \frac{388130429856080003531770233}{148879794694974337353491841152} a^{28} - \frac{13902309635611554231779925}{18609974336871792169186480144} a^{26} - \frac{204977696037520416636662025}{74439897347487168676745920576} a^{24} - \frac{274975411712143804261463313}{18609974336871792169186480144} a^{22} + \frac{74810138934737676241498651}{9304987168435896084593240072} a^{20} + \frac{69689843263160089159454337}{18609974336871792169186480144} a^{18} - \frac{4710875171771951318711127}{2326246792108974021148310018} a^{16} + \frac{280008149313563757264140565}{4652493584217948042296620036} a^{14} - \frac{312620464290862636635226}{1163123396054487010574155009} a^{12} + \frac{286028307548987129144555097}{4652493584217948042296620036} a^{10} + \frac{194010913546221209037158579}{2326246792108974021148310018} a^{8} + \frac{514433235935538473497130381}{2326246792108974021148310018} a^{6} - \frac{263381583102536673919037585}{2326246792108974021148310018} a^{4} + \frac{330697418327063979740389904}{1163123396054487010574155009} a^{2} - \frac{504622935428449945356808045}{1163123396054487010574155009}$, $\frac{1}{297759589389948674706983682304} a^{35} + \frac{752806421719491764250795}{74439897347487168676745920576} a^{33} - \frac{267462755570500681269572343}{148879794694974337353491841152} a^{31} + \frac{388130429856080003531770233}{148879794694974337353491841152} a^{29} - \frac{13902309635611554231779925}{18609974336871792169186480144} a^{27} - \frac{204977696037520416636662025}{74439897347487168676745920576} a^{25} - \frac{274975411712143804261463313}{18609974336871792169186480144} a^{23} + \frac{74810138934737676241498651}{9304987168435896084593240072} a^{21} + \frac{69689843263160089159454337}{18609974336871792169186480144} a^{19} - \frac{4710875171771951318711127}{2326246792108974021148310018} a^{17} + \frac{280008149313563757264140565}{4652493584217948042296620036} a^{15} - \frac{312620464290862636635226}{1163123396054487010574155009} a^{13} + \frac{286028307548987129144555097}{4652493584217948042296620036} a^{11} + \frac{194010913546221209037158579}{2326246792108974021148310018} a^{9} + \frac{514433235935538473497130381}{2326246792108974021148310018} a^{7} - \frac{263381583102536673919037585}{2326246792108974021148310018} a^{5} + \frac{330697418327063979740389904}{1163123396054487010574155009} a^{3} - \frac{504622935428449945356808045}{1163123396054487010574155009} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), 4.0.2048.2, 6.6.3359232.1, \(\Q(\zeta_{27})^+\), 12.0.369768517790072832.1, 18.18.132173713091594538512566714368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $36$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{4}$ | $36$ | $36$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ | $36$ | $18^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | $18^{2}$ | $36$ | $18^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{9}$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||