Normalized defining polynomial
\( x^{36} - x^{18} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$
Class group and class number
$C_{19}$, which has order $19$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( a \) (order $108$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{26} - a^{8} - a^{2} \), \( a^{32} - a^{20} + a^{2} \), \( a^{4} + 1 \), \( a^{34} - a^{16} + a^{12} \), \( a^{28} + a^{20} - a^{10} - a^{2} \), \( a^{10} - 1 \), \( a^{32} + a^{16} \), \( a^{34} - 1 \), \( a^{29} - a^{20} \), \( a^{15} - 1 \), \( a^{34} - a^{31} - a^{16} + a^{13} \), \( a^{5} - 1 \), \( a^{13} - 1 \), \( a - 1 \), \( a^{17} - 1 \), \( a^{11} - 1 \), \( a^{7} - 1 \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2861978396449.9033 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||