Normalized defining polynomial
\( x^{36} - x^{35} + 6 x^{34} - 7 x^{33} + 27 x^{32} - 35 x^{31} + 110 x^{30} - 90 x^{29} + 365 x^{28} - 253 x^{27} + 1190 x^{26} - 820 x^{25} + 3948 x^{24} - 2955 x^{23} + 8389 x^{22} - 6275 x^{21} + 16362 x^{20} - 9115 x^{19} + 28304 x^{18} + 1097 x^{17} + 33005 x^{16} + 594 x^{15} + 42702 x^{14} - 8321 x^{13} + 51190 x^{12} - 23469 x^{11} + 21146 x^{10} - 11317 x^{9} + 10292 x^{8} - 3370 x^{7} + 4283 x^{6} + 1030 x^{5} + 250 x^{4} + 59 x^{3} + 15 x^{2} + 3 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $\frac{1}{891070611726268189} a^{31} + \frac{414135339710244362}{891070611726268189} a^{30} - \frac{216547792775029726}{891070611726268189} a^{29} - \frac{385987343852553027}{891070611726268189} a^{28} + \frac{68719127092113650}{891070611726268189} a^{27} - \frac{3235385358854730}{891070611726268189} a^{26} - \frac{249167005345075668}{891070611726268189} a^{25} + \frac{267025305499179917}{891070611726268189} a^{24} + \frac{196960198876153319}{891070611726268189} a^{23} + \frac{337572080305500115}{891070611726268189} a^{22} - \frac{275524995593954760}{891070611726268189} a^{21} + \frac{111198766854825005}{891070611726268189} a^{20} + \frac{302672296476670889}{891070611726268189} a^{19} + \frac{366216229364427122}{891070611726268189} a^{18} + \frac{443668662612869859}{891070611726268189} a^{17} + \frac{159856130975663277}{891070611726268189} a^{16} + \frac{126302642719421980}{891070611726268189} a^{15} + \frac{344607775574891636}{891070611726268189} a^{14} + \frac{141553429809846308}{891070611726268189} a^{13} + \frac{162769474614137675}{891070611726268189} a^{12} + \frac{238642578377740368}{891070611726268189} a^{11} + \frac{229467026096174007}{891070611726268189} a^{10} - \frac{83895595261702555}{891070611726268189} a^{9} - \frac{171354067717107485}{891070611726268189} a^{8} - \frac{217795656779449998}{891070611726268189} a^{7} - \frac{231305644770220551}{891070611726268189} a^{6} + \frac{292667385116510676}{891070611726268189} a^{5} + \frac{79970593824781348}{891070611726268189} a^{4} + \frac{234144751300617887}{891070611726268189} a^{3} + \frac{385968731864734329}{891070611726268189} a^{2} - \frac{116101990882038413}{891070611726268189} a - \frac{388747931112795439}{891070611726268189}$, $\frac{1}{891070611726268189} a^{32} + \frac{348079524582657242}{891070611726268189} a^{30} + \frac{410907062321851088}{891070611726268189} a^{29} + \frac{438419948865166927}{891070611726268189} a^{28} + \frac{335221625895912911}{891070611726268189} a^{27} - \frac{370112003231153753}{891070611726268189} a^{26} + \frac{233957364826652115}{891070611726268189} a^{25} + \frac{140299209993018478}{891070611726268189} a^{24} + \frac{91683996091629329}{891070611726268189} a^{23} + \frac{17792707199009137}{891070611726268189} a^{22} + \frac{152566948134404711}{891070611726268189} a^{21} + \frac{171494438010473702}{891070611726268189} a^{20} - \frac{74533110244592892}{891070611726268189} a^{19} + \frac{206169093736185086}{891070611726268189} a^{18} - \frac{82406461399015537}{891070611726268189} a^{17} + \frac{306442734558098126}{891070611726268189} a^{16} - \frac{214679403552277813}{891070611726268189} a^{15} - \frac{315724174652420032}{891070611726268189} a^{14} + \frac{269496472064368543}{891070611726268189} a^{13} + \frac{363250169680403931}{891070611726268189} a^{12} - \frac{399717012384627512}{891070611726268189} a^{11} + \frac{384961811159220831}{891070611726268189} a^{10} + \frac{125469529013749294}{891070611726268189} a^{9} - \frac{412401062882592617}{891070611726268189} a^{8} - \frac{297709068712196712}{891070611726268189} a^{7} - \frac{227646566314271338}{891070611726268189} a^{6} + \frac{128501021635740675}{891070611726268189} a^{5} - \frac{153408853132411013}{891070611726268189} a^{4} + \frac{182244664319876435}{891070611726268189} a^{3} + \frac{201515294813585255}{891070611726268189} a^{2} + \frac{290422974092058101}{891070611726268189} a - \frac{28705578624189749}{891070611726268189}$, $\frac{1}{891070611726268189} a^{33} + \frac{391961034286947630}{891070611726268189} a^{30} - \frac{113550287962138560}{891070611726268189} a^{29} + \frac{291214235944340329}{891070611726268189} a^{28} - \frac{182192150333510797}{891070611726268189} a^{27} - \frac{332895031454415036}{891070611726268189} a^{26} + \frac{35948232810555190}{891070611726268189} a^{25} + \frac{401725016323998769}{891070611726268189} a^{24} - \frac{56772149296234006}{891070611726268189} a^{23} - \frac{146438032667983381}{891070611726268189} a^{22} + \frac{288139675196675220}{891070611726268189} a^{21} + \frac{356844795079739576}{891070611726268189} a^{20} + \frac{357053775677731468}{891070611726268189} a^{19} + \frac{262591747926992969}{891070611726268189} a^{18} - \frac{51829797389503875}{891070611726268189} a^{17} + \frac{1041623521255317}{2644126444291597} a^{16} + \frac{59730473363399019}{891070611726268189} a^{15} + \frac{89289562604650173}{891070611726268189} a^{14} - \frac{288412596354248329}{891070611726268189} a^{13} - \frac{230622965982126052}{891070611726268189} a^{12} - \frac{51758208407476941}{891070611726268189} a^{11} + \frac{309133239034780943}{891070611726268189} a^{10} + \frac{49156720955430865}{891070611726268189} a^{9} - \frac{407790270106632305}{891070611726268189} a^{8} - \frac{69099452118902692}{891070611726268189} a^{7} - \frac{139090342655843504}{891070611726268189} a^{6} + \frac{273817870805413169}{891070611726268189} a^{5} + \frac{292868366031717081}{891070611726268189} a^{4} + \frac{427763658632191368}{891070611726268189} a^{3} + \frac{146996345513191804}{891070611726268189} a^{2} - \frac{60257637886057751}{891070611726268189} a - \frac{211460151281603254}{891070611726268189}$, $\frac{1}{891070611726268189} a^{34} + \frac{415648882629638587}{891070611726268189} a^{30} - \frac{413652034514373093}{891070611726268189} a^{29} - \frac{181315387516238538}{891070611726268189} a^{28} - \frac{280610870202728226}{891070611726268189} a^{27} - \frac{375376058248103060}{891070611726268189} a^{26} - \frac{236666205304891190}{891070611726268189} a^{25} + \frac{206886207186274668}{891070611726268189} a^{24} + \frac{224587030989821453}{891070611726268189} a^{23} - \frac{29961581195938930}{891070611726268189} a^{22} - \frac{209396957370267984}{891070611726268189} a^{21} - \frac{152281875997420992}{891070611726268189} a^{20} + \frac{141361832568551556}{891070611726268189} a^{19} - \frac{118771999437003174}{891070611726268189} a^{18} - \frac{71807194504670874}{891070611726268189} a^{17} + \frac{111545208241193215}{891070611726268189} a^{16} - \frac{90245664524946558}{891070611726268189} a^{15} - \frac{394063061095095668}{891070611726268189} a^{14} + \frac{19071696959710740}{891070611726268189} a^{13} + \frac{233896860343204471}{891070611726268189} a^{12} - \frac{433858760446157148}{891070611726268189} a^{11} - \frac{181626821069275439}{891070611726268189} a^{10} - \frac{254095502035245780}{891070611726268189} a^{9} + \frac{113260256670390319}{891070611726268189} a^{8} - \frac{189711372516680760}{891070611726268189} a^{7} + \frac{403925165882385955}{891070611726268189} a^{6} - \frac{333715225027408270}{891070611726268189} a^{5} - \frac{283626493341792320}{891070611726268189} a^{4} - \frac{291804922704351961}{891070611726268189} a^{3} - \frac{414491813091707364}{891070611726268189} a^{2} + \frac{238802697557253839}{891070611726268189} a - \frac{371651652817833818}{891070611726268189}$, $\frac{1}{891070611726268189} a^{35} - \frac{56261615665655647}{891070611726268189} a^{28} - \frac{203524365896202640}{891070611726268189} a^{21} - \frac{407394260656743131}{891070611726268189} a^{14} - \frac{178798326490055451}{891070611726268189} a^{7} - \frac{393550456008817635}{891070611726268189}$
Class group and class number
$C_{2}\times C_{182}$, which has order $364$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{12486442664901100}{891070611726268189} a^{35} - \frac{31216106662252750}{891070611726268189} a^{34} + \frac{84283487988082425}{891070611726268189} a^{33} - \frac{187296639973516500}{891070611726268189} a^{32} + \frac{408943283688848980}{891070611726268189} a^{31} - \frac{858442933211950625}{891070611726268189} a^{30} + \frac{1754345194418604550}{891070611726268189} a^{29} - \frac{2771990271608044200}{891070611726268189} a^{28} + \frac{5103833439278324625}{891070611726268189} a^{27} - \frac{8809185300087726050}{891070611726268189} a^{26} + \frac{15898363123085325575}{891070611726268189} a^{25} - \frac{29017700027360344989}{891070611726268189} a^{24} + \frac{52720882541878669475}{891070611726268189} a^{23} - \frac{99448272604604810950}{891070611726268189} a^{22} + \frac{120562847150952571050}{891070611726268189} a^{21} - \frac{195478381529692945775}{891070611726268189} a^{20} + \frac{234045881310906218400}{891070611726268189} a^{19} - \frac{335317174544586589950}{891070611726268189} a^{18} + \frac{351260496660577901910}{891070611726268189} a^{17} - \frac{379990544788936500475}{891070611726268189} a^{16} + \frac{98052912636802113025}{891070611726268189} a^{15} - \frac{532674765695347151275}{891070611726268189} a^{14} + \frac{216408781046733414650}{891070611726268189} a^{13} - \frac{806227751598000450075}{891070611726268189} a^{12} + \frac{396987714866533122850}{891070611726268189} a^{11} - \frac{1041664400724339229980}{891070611726268189} a^{10} + \frac{198244128579968539425}{891070611726268189} a^{9} - \frac{157788054345688975425}{891070611726268189} a^{8} + \frac{69184257195550769825}{891070611726268189} a^{7} - \frac{62853630764445912125}{891070611726268189} a^{6} - \frac{15111717235196556275}{891070611726268189} a^{5} - \frac{3671014143480923400}{891070611726268189} a^{4} - \frac{64432239260792924670}{891070611726268189} a^{3} - \frac{221634357301994525}{891070611726268189} a^{2} - \frac{43702549327153850}{891070611726268189} a - \frac{15608053331126375}{891070611726268189} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4866030378143.887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |