Normalized defining polynomial
\( x^{36} + 34 x^{34} + 676 x^{32} + 9040 x^{30} + 90624 x^{28} + 699296 x^{26} + 4279936 x^{24} + 20814464 x^{22} + 81078016 x^{20} + 249758720 x^{18} + 606287872 x^{16} + 1124603904 x^{14} + 1576677376 x^{12} + 1557225472 x^{10} + 1081884672 x^{8} + 426049536 x^{6} + 111083520 x^{4} + 5898240 x^{2} + 262144 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{606208} a^{28} - \frac{1}{75776} a^{26} + \frac{1}{9472} a^{24} - \frac{11}{9472} a^{16} + \frac{7}{4736} a^{14} + \frac{9}{2368} a^{12} + \frac{5}{74} a^{4} - \frac{3}{74} a^{2} + \frac{12}{37}$, $\frac{1}{606208} a^{29} - \frac{1}{75776} a^{27} + \frac{1}{9472} a^{25} - \frac{11}{9472} a^{17} + \frac{7}{4736} a^{15} + \frac{9}{2368} a^{13} + \frac{5}{74} a^{5} - \frac{3}{74} a^{3} + \frac{12}{37} a$, $\frac{1}{1212416} a^{30} - \frac{5}{75776} a^{24} - \frac{11}{18944} a^{18} - \frac{1}{2368} a^{12} + \frac{5}{148} a^{6} + \frac{11}{37}$, $\frac{1}{1212416} a^{31} - \frac{5}{75776} a^{25} - \frac{11}{18944} a^{19} - \frac{1}{2368} a^{13} + \frac{5}{148} a^{7} + \frac{11}{37} a$, $\frac{1}{2424832} a^{32} - \frac{5}{151552} a^{26} - \frac{11}{37888} a^{20} - \frac{1}{4736} a^{14} + \frac{5}{296} a^{8} + \frac{11}{74} a^{2}$, $\frac{1}{2424832} a^{33} - \frac{5}{151552} a^{27} - \frac{11}{37888} a^{21} - \frac{1}{4736} a^{15} + \frac{5}{296} a^{9} + \frac{11}{74} a^{3}$, $\frac{1}{7486578500729254609948939165761536} a^{34} + \frac{281300412479481997906040743}{1871644625182313652487234791440384} a^{32} - \frac{112201860836853889114726237}{467911156295578413121808697860096} a^{30} + \frac{266908974984267448615875399}{467911156295578413121808697860096} a^{28} + \frac{16981243015673558372280861}{1021640079247987801576001523712} a^{26} + \frac{1241362507561130718870617621}{29244447268473650820113043616256} a^{24} + \frac{15691695729946070417197777447}{116977789073894603280452174465024} a^{22} - \frac{6443514245908241039294162037}{14622223634236825410056521808128} a^{20} - \frac{101001686791918555097976543}{1827777954279603176257065226016} a^{18} + \frac{22156432587936718189242127121}{14622223634236825410056521808128} a^{16} - \frac{6600734249705680665965007911}{3655555908559206352514130452032} a^{14} + \frac{15882856580042423864710821167}{3655555908559206352514130452032} a^{12} + \frac{4471241508449024007978869677}{1827777954279603176257065226016} a^{10} - \frac{3407986087532580637108559025}{114236122142475198516066576626} a^{8} - \frac{10280425897839528682011277851}{228472244284950397032133153252} a^{6} - \frac{20976725452887937630990242929}{228472244284950397032133153252} a^{4} + \frac{23706273027634887149215856239}{114236122142475198516066576626} a^{2} + \frac{9961109638644629283251629416}{57118061071237599258033288313}$, $\frac{1}{7486578500729254609948939165761536} a^{35} + \frac{281300412479481997906040743}{1871644625182313652487234791440384} a^{33} - \frac{112201860836853889114726237}{467911156295578413121808697860096} a^{31} + \frac{266908974984267448615875399}{467911156295578413121808697860096} a^{29} + \frac{16981243015673558372280861}{1021640079247987801576001523712} a^{27} + \frac{1241362507561130718870617621}{29244447268473650820113043616256} a^{25} + \frac{15691695729946070417197777447}{116977789073894603280452174465024} a^{23} - \frac{6443514245908241039294162037}{14622223634236825410056521808128} a^{21} - \frac{101001686791918555097976543}{1827777954279603176257065226016} a^{19} + \frac{22156432587936718189242127121}{14622223634236825410056521808128} a^{17} - \frac{6600734249705680665965007911}{3655555908559206352514130452032} a^{15} + \frac{15882856580042423864710821167}{3655555908559206352514130452032} a^{13} + \frac{4471241508449024007978869677}{1827777954279603176257065226016} a^{11} - \frac{3407986087532580637108559025}{114236122142475198516066576626} a^{9} - \frac{10280425897839528682011277851}{228472244284950397032133153252} a^{7} - \frac{20976725452887937630990242929}{228472244284950397032133153252} a^{5} + \frac{23706273027634887149215856239}{114236122142475198516066576626} a^{3} + \frac{9961109638644629283251629416}{57118061071237599258033288313} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1742784048321520613392253361}{7486578500729254609948939165761536} a^{34} - \frac{3693825510350631872540163025}{467911156295578413121808697860096} a^{32} - \frac{146621167645672965906869296181}{935822312591156826243617395720192} a^{30} - \frac{1956648776191828306544726157119}{935822312591156826243617395720192} a^{28} - \frac{42738307960775112954483221721}{2043280158495975603152003047424} a^{26} - \frac{37667896439467774774793265896323}{233955578147789206560904348930048} a^{24} - \frac{114956248500605056936346196574849}{116977789073894603280452174465024} a^{22} - \frac{278594490082387740175473699925741}{58488894536947301640226087232512} a^{20} - \frac{270230873428136620688433097061729}{14622223634236825410056521808128} a^{18} - \frac{828175646028262090490021672275013}{14622223634236825410056521808128} a^{16} - \frac{499427116839174479609429317685573}{3655555908559206352514130452032} a^{14} - \frac{918155071348781884221179527924461}{3655555908559206352514130452032} a^{12} - \frac{159099282680069082953770833151219}{456944488569900794064266306504} a^{10} - \frac{154244491858455031945920065198521}{456944488569900794064266306504} a^{8} - \frac{13116483585798664839994874126889}{57118061071237599258033288313} a^{6} - \frac{19557018116840705443989314105499}{228472244284950397032133153252} a^{4} - \frac{2621525988583112397929480907399}{114236122142475198516066576626} a^{2} - \frac{12431064570713107002485864270}{57118061071237599258033288313} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||