Normalized defining polynomial
\( x^{36} + 72 x^{34} + 2268 x^{32} + 41280 x^{30} + 483804 x^{28} + 3859488 x^{26} + 21644784 x^{24} + 87049728 x^{22} + 253983600 x^{20} + 540202944 x^{18} + 836167104 x^{16} + 933856128 x^{14} + 740057472 x^{12} + 405022464 x^{10} + 146810880 x^{8} + 33039360 x^{6} + 4167936 x^{4} + 248832 x^{2} + 4608 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{48} a^{18}$, $\frac{1}{48} a^{19}$, $\frac{1}{96} a^{20}$, $\frac{1}{96} a^{21}$, $\frac{1}{96} a^{22}$, $\frac{1}{96} a^{23}$, $\frac{1}{192} a^{24}$, $\frac{1}{192} a^{25}$, $\frac{1}{192} a^{26}$, $\frac{1}{192} a^{27}$, $\frac{1}{384} a^{28}$, $\frac{1}{384} a^{29}$, $\frac{1}{384} a^{30}$, $\frac{1}{384} a^{31}$, $\frac{1}{662784} a^{32} - \frac{109}{165696} a^{30} - \frac{337}{331392} a^{28} + \frac{397}{165696} a^{26} + \frac{1}{863} a^{24} + \frac{5}{41424} a^{22} - \frac{49}{13808} a^{20} - \frac{133}{13808} a^{18} + \frac{383}{13808} a^{16} - \frac{399}{6904} a^{14} - \frac{95}{1726} a^{12} + \frac{78}{863} a^{10} - \frac{63}{863} a^{8} + \frac{273}{1726} a^{6} - \frac{167}{863} a^{4} + \frac{211}{863} a^{2} - \frac{207}{863}$, $\frac{1}{662784} a^{33} - \frac{109}{165696} a^{31} - \frac{337}{331392} a^{29} + \frac{397}{165696} a^{27} + \frac{1}{863} a^{25} + \frac{5}{41424} a^{23} - \frac{49}{13808} a^{21} - \frac{133}{13808} a^{19} + \frac{383}{13808} a^{17} - \frac{399}{6904} a^{15} - \frac{95}{1726} a^{13} + \frac{78}{863} a^{11} - \frac{63}{863} a^{9} + \frac{273}{1726} a^{7} - \frac{167}{863} a^{5} + \frac{211}{863} a^{3} - \frac{207}{863} a$, $\frac{1}{6162346530732423844306176} a^{34} - \frac{763030662079597181}{1027057755122070640717696} a^{32} + \frac{2923435859564969221403}{3081173265366211922153088} a^{30} - \frac{833560083227853660361}{770293316341552980538272} a^{28} - \frac{848886422231959117779}{513528877561035320358848} a^{26} + \frac{432682614938729579941}{513528877561035320358848} a^{24} + \frac{109991477070310272175}{256764438780517660179424} a^{22} + \frac{1062998553771274779363}{256764438780517660179424} a^{20} - \frac{1914077898989161566647}{192573329085388245134568} a^{18} - \frac{142665337353871119991}{32095554847564707522428} a^{16} + \frac{1698203216085092503575}{32095554847564707522428} a^{14} + \frac{1715912971386473175929}{64191109695129415044856} a^{12} - \frac{918472319959002528785}{16047777423782353761214} a^{10} + \frac{565629521922957946665}{16047777423782353761214} a^{8} + \frac{2001319721478938007714}{8023888711891176880607} a^{6} - \frac{1817892719642209002927}{8023888711891176880607} a^{4} - \frac{3455054067858305387238}{8023888711891176880607} a^{2} - \frac{2446810146890980221194}{8023888711891176880607}$, $\frac{1}{6162346530732423844306176} a^{35} - \frac{763030662079597181}{1027057755122070640717696} a^{33} + \frac{2923435859564969221403}{3081173265366211922153088} a^{31} - \frac{833560083227853660361}{770293316341552980538272} a^{29} - \frac{848886422231959117779}{513528877561035320358848} a^{27} + \frac{432682614938729579941}{513528877561035320358848} a^{25} + \frac{109991477070310272175}{256764438780517660179424} a^{23} + \frac{1062998553771274779363}{256764438780517660179424} a^{21} - \frac{1914077898989161566647}{192573329085388245134568} a^{19} - \frac{142665337353871119991}{32095554847564707522428} a^{17} + \frac{1698203216085092503575}{32095554847564707522428} a^{15} + \frac{1715912971386473175929}{64191109695129415044856} a^{13} - \frac{918472319959002528785}{16047777423782353761214} a^{11} + \frac{565629521922957946665}{16047777423782353761214} a^{9} + \frac{2001319721478938007714}{8023888711891176880607} a^{7} - \frac{1817892719642209002927}{8023888711891176880607} a^{5} - \frac{3455054067858305387238}{8023888711891176880607} a^{3} - \frac{2446810146890980221194}{8023888711891176880607} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), 4.0.18432.2, 6.6.3359232.1, \(\Q(\zeta_{27})^+\), 12.0.3327916660110655488.1, 18.18.132173713091594538512566714368.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $36$ | $18^{2}$ | $36$ | $36$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ | $36$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | $36$ | $18^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{9}$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||