Properties

Label 36.0.527...568.1
Degree $36$
Signature $[0, 18]$
Discriminant $5.273\times 10^{70}$
Root discriminant \(92.15\)
Ramified primes $2,19$
Class number $10893133$ (GRH)
Class group [37, 294409] (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^36 + 68*x^34 + 2018*x^32 + 34520*x^30 + 379376*x^28 + 2832128*x^26 + 14836664*x^24 + 55646624*x^22 + 151170256*x^20 + 298819648*x^18 + 428794592*x^16 + 442226304*x^14 + 321513984*x^12 + 159622144*x^10 + 51473664*x^8 + 9968640*x^6 + 1025280*x^4 + 46080*x^2 + 512)
 
Copy content gp:K = bnfinit(y^36 + 68*y^34 + 2018*y^32 + 34520*y^30 + 379376*y^28 + 2832128*y^26 + 14836664*y^24 + 55646624*y^22 + 151170256*y^20 + 298819648*y^18 + 428794592*y^16 + 442226304*y^14 + 321513984*y^12 + 159622144*y^10 + 51473664*y^8 + 9968640*y^6 + 1025280*y^4 + 46080*y^2 + 512, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 + 68*x^34 + 2018*x^32 + 34520*x^30 + 379376*x^28 + 2832128*x^26 + 14836664*x^24 + 55646624*x^22 + 151170256*x^20 + 298819648*x^18 + 428794592*x^16 + 442226304*x^14 + 321513984*x^12 + 159622144*x^10 + 51473664*x^8 + 9968640*x^6 + 1025280*x^4 + 46080*x^2 + 512);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^36 + 68*x^34 + 2018*x^32 + 34520*x^30 + 379376*x^28 + 2832128*x^26 + 14836664*x^24 + 55646624*x^22 + 151170256*x^20 + 298819648*x^18 + 428794592*x^16 + 442226304*x^14 + 321513984*x^12 + 159622144*x^10 + 51473664*x^8 + 9968640*x^6 + 1025280*x^4 + 46080*x^2 + 512)
 

\( x^{36} + 68 x^{34} + 2018 x^{32} + 34520 x^{30} + 379376 x^{28} + 2832128 x^{26} + 14836664 x^{24} + \cdots + 512 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $36$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 18]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(52733281945045886724167383478270850720626086921526306402773390818541568\) \(\medspace = 2^{99}\cdot 19^{32}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(92.15\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{11/4}19^{8/9}\approx 92.151488696787$
Ramified primes:   \(2\), \(19\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{2}) \)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_{36}$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(304=2^{4}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{304}(1,·)$, $\chi_{304}(131,·)$, $\chi_{304}(9,·)$, $\chi_{304}(11,·)$, $\chi_{304}(17,·)$, $\chi_{304}(275,·)$, $\chi_{304}(73,·)$, $\chi_{304}(25,·)$, $\chi_{304}(153,·)$, $\chi_{304}(283,·)$, $\chi_{304}(289,·)$, $\chi_{304}(35,·)$, $\chi_{304}(49,·)$, $\chi_{304}(169,·)$, $\chi_{304}(43,·)$, $\chi_{304}(177,·)$, $\chi_{304}(115,·)$, $\chi_{304}(137,·)$, $\chi_{304}(187,·)$, $\chi_{304}(123,·)$, $\chi_{304}(267,·)$, $\chi_{304}(161,·)$, $\chi_{304}(201,·)$, $\chi_{304}(291,·)$, $\chi_{304}(81,·)$, $\chi_{304}(163,·)$, $\chi_{304}(139,·)$, $\chi_{304}(225,·)$, $\chi_{304}(99,·)$, $\chi_{304}(195,·)$, $\chi_{304}(273,·)$, $\chi_{304}(233,·)$, $\chi_{304}(235,·)$, $\chi_{304}(83,·)$, $\chi_{304}(121,·)$, $\chi_{304}(251,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{4}a^{8}$, $\frac{1}{4}a^{9}$, $\frac{1}{4}a^{10}$, $\frac{1}{4}a^{11}$, $\frac{1}{8}a^{12}$, $\frac{1}{8}a^{13}$, $\frac{1}{8}a^{14}$, $\frac{1}{8}a^{15}$, $\frac{1}{16}a^{16}$, $\frac{1}{16}a^{17}$, $\frac{1}{16}a^{18}$, $\frac{1}{16}a^{19}$, $\frac{1}{32}a^{20}$, $\frac{1}{32}a^{21}$, $\frac{1}{32}a^{22}$, $\frac{1}{32}a^{23}$, $\frac{1}{64}a^{24}$, $\frac{1}{64}a^{25}$, $\frac{1}{64}a^{26}$, $\frac{1}{64}a^{27}$, $\frac{1}{128}a^{28}$, $\frac{1}{128}a^{29}$, $\frac{1}{128}a^{30}$, $\frac{1}{128}a^{31}$, $\frac{1}{256}a^{32}$, $\frac{1}{256}a^{33}$, $\frac{1}{98\cdots 96}a^{34}-\frac{30\cdots 55}{98\cdots 96}a^{32}-\frac{78\cdots 55}{49\cdots 48}a^{30}-\frac{55\cdots 83}{30\cdots 28}a^{28}-\frac{30\cdots 93}{12\cdots 12}a^{26}-\frac{16\cdots 75}{24\cdots 24}a^{24}+\frac{13\cdots 61}{12\cdots 12}a^{22}-\frac{48\cdots 07}{12\cdots 12}a^{20}-\frac{24\cdots 37}{15\cdots 64}a^{18}+\frac{89\cdots 68}{38\cdots 41}a^{16}+\frac{10\cdots 25}{30\cdots 28}a^{14}+\frac{43\cdots 96}{38\cdots 41}a^{12}-\frac{10\cdots 83}{15\cdots 64}a^{10}-\frac{16\cdots 41}{15\cdots 64}a^{8}+\frac{11\cdots 97}{76\cdots 82}a^{6}-\frac{74\cdots 08}{38\cdots 41}a^{4}+\frac{12\cdots 05}{38\cdots 41}a^{2}-\frac{10\cdots 26}{38\cdots 41}$, $\frac{1}{98\cdots 96}a^{35}-\frac{30\cdots 55}{98\cdots 96}a^{33}-\frac{78\cdots 55}{49\cdots 48}a^{31}-\frac{55\cdots 83}{30\cdots 28}a^{29}-\frac{30\cdots 93}{12\cdots 12}a^{27}-\frac{16\cdots 75}{24\cdots 24}a^{25}+\frac{13\cdots 61}{12\cdots 12}a^{23}-\frac{48\cdots 07}{12\cdots 12}a^{21}-\frac{24\cdots 37}{15\cdots 64}a^{19}+\frac{89\cdots 68}{38\cdots 41}a^{17}+\frac{10\cdots 25}{30\cdots 28}a^{15}+\frac{43\cdots 96}{38\cdots 41}a^{13}-\frac{10\cdots 83}{15\cdots 64}a^{11}-\frac{16\cdots 41}{15\cdots 64}a^{9}+\frac{11\cdots 97}{76\cdots 82}a^{7}-\frac{74\cdots 08}{38\cdots 41}a^{5}+\frac{12\cdots 05}{38\cdots 41}a^{3}-\frac{10\cdots 26}{38\cdots 41}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{37}\times C_{294409}$, which has order $10893133$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{294409}\times C_{37}$, which has order $10893133$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 
Relative class number:   $10893133$ (assuming GRH)

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $17$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{58\cdots 59}{30\cdots 28}a^{34}+\frac{12\cdots 17}{98\cdots 96}a^{32}+\frac{13\cdots 19}{38\cdots 41}a^{30}+\frac{27\cdots 11}{49\cdots 48}a^{28}+\frac{70\cdots 09}{12\cdots 12}a^{26}+\frac{47\cdots 37}{12\cdots 12}a^{24}+\frac{10\cdots 05}{61\cdots 56}a^{22}+\frac{69\cdots 67}{12\cdots 12}a^{20}+\frac{38\cdots 85}{30\cdots 28}a^{18}+\frac{11\cdots 91}{61\cdots 56}a^{16}+\frac{70\cdots 07}{38\cdots 41}a^{14}+\frac{33\cdots 57}{30\cdots 28}a^{12}+\frac{23\cdots 95}{76\cdots 82}a^{10}-\frac{25\cdots 19}{76\cdots 82}a^{8}-\frac{16\cdots 00}{38\cdots 41}a^{6}-\frac{33\cdots 49}{38\cdots 41}a^{4}-\frac{21\cdots 96}{38\cdots 41}a^{2}-\frac{46\cdots 27}{38\cdots 41}$, $\frac{59\cdots 55}{38\cdots 41}a^{34}+\frac{32\cdots 39}{30\cdots 28}a^{32}+\frac{37\cdots 35}{12\cdots 12}a^{30}+\frac{31\cdots 15}{61\cdots 56}a^{28}+\frac{33\cdots 43}{61\cdots 56}a^{26}+\frac{11\cdots 35}{30\cdots 28}a^{24}+\frac{28\cdots 27}{15\cdots 64}a^{22}+\frac{45\cdots 49}{76\cdots 82}a^{20}+\frac{19\cdots 91}{15\cdots 64}a^{18}+\frac{11\cdots 95}{76\cdots 82}a^{16}+\frac{15\cdots 83}{38\cdots 41}a^{14}-\frac{68\cdots 38}{38\cdots 41}a^{12}-\frac{11\cdots 70}{38\cdots 41}a^{10}-\frac{37\cdots 95}{15\cdots 64}a^{8}-\frac{38\cdots 16}{38\cdots 41}a^{6}-\frac{77\cdots 02}{38\cdots 41}a^{4}-\frac{52\cdots 96}{38\cdots 41}a^{2}-\frac{43\cdots 58}{38\cdots 41}$, $\frac{40\cdots 25}{61\cdots 56}a^{34}+\frac{26\cdots 39}{61\cdots 56}a^{32}+\frac{37\cdots 43}{30\cdots 28}a^{30}+\frac{59\cdots 91}{30\cdots 28}a^{28}+\frac{15\cdots 61}{76\cdots 82}a^{26}+\frac{50\cdots 95}{38\cdots 41}a^{24}+\frac{44\cdots 71}{76\cdots 82}a^{22}+\frac{21\cdots 65}{12\cdots 12}a^{20}+\frac{11\cdots 85}{30\cdots 28}a^{18}+\frac{14\cdots 85}{30\cdots 28}a^{16}+\frac{55\cdots 61}{15\cdots 64}a^{14}+\frac{18\cdots 19}{30\cdots 28}a^{12}-\frac{11\cdots 93}{76\cdots 82}a^{10}-\frac{10\cdots 59}{76\cdots 82}a^{8}-\frac{20\cdots 06}{38\cdots 41}a^{6}-\frac{69\cdots 87}{76\cdots 82}a^{4}-\frac{21\cdots 86}{38\cdots 41}a^{2}-\frac{58\cdots 39}{38\cdots 41}$, $\frac{50\cdots 33}{61\cdots 56}a^{34}+\frac{33\cdots 19}{61\cdots 56}a^{32}+\frac{49\cdots 79}{30\cdots 28}a^{30}+\frac{83\cdots 31}{30\cdots 28}a^{28}+\frac{22\cdots 89}{76\cdots 82}a^{26}+\frac{81\cdots 63}{38\cdots 41}a^{24}+\frac{16\cdots 79}{15\cdots 64}a^{22}+\frac{47\cdots 73}{12\cdots 12}a^{20}+\frac{30\cdots 61}{30\cdots 28}a^{18}+\frac{11\cdots 17}{61\cdots 56}a^{16}+\frac{37\cdots 81}{15\cdots 64}a^{14}+\frac{71\cdots 99}{30\cdots 28}a^{12}+\frac{11\cdots 31}{76\cdots 82}a^{10}+\frac{50\cdots 63}{76\cdots 82}a^{8}+\frac{66\cdots 02}{38\cdots 41}a^{6}+\frac{18\cdots 81}{76\cdots 82}a^{4}+\frac{52\cdots 90}{38\cdots 41}a^{2}+\frac{50\cdots 96}{38\cdots 41}$, $\frac{77\cdots 03}{49\cdots 48}a^{34}+\frac{20\cdots 87}{98\cdots 96}a^{32}+\frac{23\cdots 91}{24\cdots 24}a^{30}+\frac{11\cdots 53}{49\cdots 48}a^{28}+\frac{21\cdots 71}{61\cdots 56}a^{26}+\frac{82\cdots 57}{24\cdots 24}a^{24}+\frac{13\cdots 81}{61\cdots 56}a^{22}+\frac{58\cdots 63}{61\cdots 56}a^{20}+\frac{89\cdots 03}{30\cdots 28}a^{18}+\frac{38\cdots 37}{61\cdots 56}a^{16}+\frac{13\cdots 97}{15\cdots 64}a^{14}+\frac{13\cdots 23}{15\cdots 64}a^{12}+\frac{22\cdots 16}{38\cdots 41}a^{10}+\frac{18\cdots 19}{76\cdots 82}a^{8}+\frac{22\cdots 86}{38\cdots 41}a^{6}+\frac{28\cdots 18}{38\cdots 41}a^{4}+\frac{14\cdots 80}{38\cdots 41}a^{2}-\frac{58\cdots 85}{38\cdots 41}$, $\frac{12\cdots 01}{76\cdots 82}a^{34}+\frac{18\cdots 45}{15\cdots 64}a^{32}+\frac{15\cdots 92}{38\cdots 41}a^{30}+\frac{58\cdots 85}{76\cdots 82}a^{28}+\frac{36\cdots 14}{38\cdots 41}a^{26}+\frac{31\cdots 68}{38\cdots 41}a^{24}+\frac{74\cdots 37}{15\cdots 64}a^{22}+\frac{15\cdots 13}{76\cdots 82}a^{20}+\frac{47\cdots 69}{76\cdots 82}a^{18}+\frac{83\cdots 47}{61\cdots 56}a^{16}+\frac{80\cdots 30}{38\cdots 41}a^{14}+\frac{87\cdots 85}{38\cdots 41}a^{12}+\frac{64\cdots 62}{38\cdots 41}a^{10}+\frac{30\cdots 11}{38\cdots 41}a^{8}+\frac{86\cdots 08}{38\cdots 41}a^{6}+\frac{12\cdots 84}{38\cdots 41}a^{4}+\frac{74\cdots 76}{38\cdots 41}a^{2}+\frac{70\cdots 94}{38\cdots 41}$, $\frac{59\cdots 55}{38\cdots 41}a^{34}+\frac{32\cdots 39}{30\cdots 28}a^{32}+\frac{37\cdots 35}{12\cdots 12}a^{30}+\frac{31\cdots 15}{61\cdots 56}a^{28}+\frac{33\cdots 43}{61\cdots 56}a^{26}+\frac{11\cdots 35}{30\cdots 28}a^{24}+\frac{28\cdots 27}{15\cdots 64}a^{22}+\frac{45\cdots 49}{76\cdots 82}a^{20}+\frac{19\cdots 91}{15\cdots 64}a^{18}+\frac{11\cdots 95}{76\cdots 82}a^{16}+\frac{15\cdots 83}{38\cdots 41}a^{14}-\frac{68\cdots 38}{38\cdots 41}a^{12}-\frac{11\cdots 70}{38\cdots 41}a^{10}-\frac{37\cdots 95}{15\cdots 64}a^{8}-\frac{38\cdots 16}{38\cdots 41}a^{6}-\frac{77\cdots 02}{38\cdots 41}a^{4}-\frac{52\cdots 96}{38\cdots 41}a^{2}+\frac{34\cdots 83}{38\cdots 41}$, $\frac{55\cdots 77}{61\cdots 56}a^{34}+\frac{37\cdots 45}{61\cdots 56}a^{32}+\frac{54\cdots 23}{30\cdots 28}a^{30}+\frac{14\cdots 57}{49\cdots 48}a^{28}+\frac{19\cdots 07}{61\cdots 56}a^{26}+\frac{29\cdots 37}{12\cdots 12}a^{24}+\frac{91\cdots 49}{76\cdots 82}a^{22}+\frac{51\cdots 57}{12\cdots 12}a^{20}+\frac{15\cdots 73}{15\cdots 64}a^{18}+\frac{55\cdots 71}{30\cdots 28}a^{16}+\frac{81\cdots 52}{38\cdots 41}a^{14}+\frac{24\cdots 67}{15\cdots 64}a^{12}+\frac{52\cdots 21}{76\cdots 82}a^{10}+\frac{33\cdots 64}{38\cdots 41}a^{8}-\frac{16\cdots 77}{38\cdots 41}a^{6}-\frac{12\cdots 71}{76\cdots 82}a^{4}-\frac{49\cdots 38}{38\cdots 41}a^{2}-\frac{49\cdots 83}{38\cdots 41}$, $\frac{18\cdots 97}{98\cdots 96}a^{34}+\frac{15\cdots 73}{12\cdots 12}a^{32}+\frac{92\cdots 43}{24\cdots 24}a^{30}+\frac{98\cdots 83}{15\cdots 64}a^{28}+\frac{17\cdots 15}{24\cdots 24}a^{26}+\frac{15\cdots 17}{30\cdots 28}a^{24}+\frac{16\cdots 47}{61\cdots 56}a^{22}+\frac{38\cdots 06}{38\cdots 41}a^{20}+\frac{16\cdots 51}{61\cdots 56}a^{18}+\frac{38\cdots 63}{76\cdots 82}a^{16}+\frac{10\cdots 85}{15\cdots 64}a^{14}+\frac{24\cdots 12}{38\cdots 41}a^{12}+\frac{32\cdots 93}{76\cdots 82}a^{10}+\frac{68\cdots 96}{38\cdots 41}a^{8}+\frac{18\cdots 74}{38\cdots 41}a^{6}+\frac{26\cdots 08}{38\cdots 41}a^{4}+\frac{16\cdots 49}{38\cdots 41}a^{2}+\frac{22\cdots 77}{38\cdots 41}$, $\frac{24\cdots 97}{98\cdots 96}a^{34}+\frac{20\cdots 51}{12\cdots 12}a^{32}+\frac{12\cdots 87}{24\cdots 24}a^{30}+\frac{25\cdots 57}{30\cdots 28}a^{28}+\frac{22\cdots 67}{24\cdots 24}a^{26}+\frac{19\cdots 77}{30\cdots 28}a^{24}+\frac{20\cdots 15}{61\cdots 56}a^{22}+\frac{14\cdots 57}{12\cdots 12}a^{20}+\frac{18\cdots 21}{61\cdots 56}a^{18}+\frac{16\cdots 37}{30\cdots 28}a^{16}+\frac{54\cdots 23}{76\cdots 82}a^{14}+\frac{19\cdots 15}{30\cdots 28}a^{12}+\frac{15\cdots 00}{38\cdots 41}a^{10}+\frac{12\cdots 33}{76\cdots 82}a^{8}+\frac{16\cdots 68}{38\cdots 41}a^{6}+\frac{45\cdots 29}{76\cdots 82}a^{4}+\frac{14\cdots 63}{38\cdots 41}a^{2}+\frac{24\cdots 20}{38\cdots 41}$, $\frac{18\cdots 01}{98\cdots 96}a^{34}+\frac{14\cdots 55}{98\cdots 96}a^{32}+\frac{12\cdots 91}{24\cdots 24}a^{30}+\frac{29\cdots 11}{30\cdots 28}a^{28}+\frac{29\cdots 79}{24\cdots 24}a^{26}+\frac{38\cdots 45}{38\cdots 41}a^{24}+\frac{36\cdots 31}{61\cdots 56}a^{22}+\frac{95\cdots 69}{38\cdots 41}a^{20}+\frac{45\cdots 55}{61\cdots 56}a^{18}+\frac{23\cdots 81}{15\cdots 64}a^{16}+\frac{35\cdots 09}{15\cdots 64}a^{14}+\frac{93\cdots 68}{38\cdots 41}a^{12}+\frac{13\cdots 01}{76\cdots 82}a^{10}+\frac{30\cdots 52}{38\cdots 41}a^{8}+\frac{87\cdots 58}{38\cdots 41}a^{6}+\frac{13\cdots 96}{38\cdots 41}a^{4}+\frac{98\cdots 37}{38\cdots 41}a^{2}+\frac{24\cdots 24}{38\cdots 41}$, $\frac{11\cdots 89}{98\cdots 96}a^{34}+\frac{98\cdots 69}{12\cdots 12}a^{32}+\frac{58\cdots 19}{24\cdots 24}a^{30}+\frac{31\cdots 03}{76\cdots 82}a^{28}+\frac{10\cdots 71}{24\cdots 24}a^{26}+\frac{80\cdots 83}{24\cdots 24}a^{24}+\frac{10\cdots 91}{61\cdots 56}a^{22}+\frac{18\cdots 15}{30\cdots 28}a^{20}+\frac{98\cdots 59}{61\cdots 56}a^{18}+\frac{90\cdots 21}{30\cdots 28}a^{16}+\frac{59\cdots 79}{15\cdots 64}a^{14}+\frac{13\cdots 85}{38\cdots 41}a^{12}+\frac{16\cdots 83}{76\cdots 82}a^{10}+\frac{12\cdots 79}{15\cdots 64}a^{8}+\frac{74\cdots 50}{38\cdots 41}a^{6}+\frac{10\cdots 26}{38\cdots 41}a^{4}+\frac{71\cdots 69}{38\cdots 41}a^{2}+\frac{17\cdots 64}{38\cdots 41}$, $\frac{16\cdots 17}{98\cdots 96}a^{34}+\frac{14\cdots 17}{12\cdots 12}a^{32}+\frac{84\cdots 73}{24\cdots 24}a^{30}+\frac{36\cdots 17}{61\cdots 56}a^{28}+\frac{15\cdots 43}{24\cdots 24}a^{26}+\frac{73\cdots 41}{15\cdots 64}a^{24}+\frac{15\cdots 39}{61\cdots 56}a^{22}+\frac{71\cdots 63}{76\cdots 82}a^{20}+\frac{15\cdots 87}{61\cdots 56}a^{18}+\frac{18\cdots 34}{38\cdots 41}a^{16}+\frac{10\cdots 53}{15\cdots 64}a^{14}+\frac{25\cdots 50}{38\cdots 41}a^{12}+\frac{34\cdots 33}{76\cdots 82}a^{10}+\frac{31\cdots 79}{15\cdots 64}a^{8}+\frac{21\cdots 90}{38\cdots 41}a^{6}+\frac{34\cdots 10}{38\cdots 41}a^{4}+\frac{21\cdots 45}{38\cdots 41}a^{2}+\frac{26\cdots 76}{38\cdots 41}$, $\frac{21\cdots 85}{98\cdots 96}a^{34}+\frac{32\cdots 69}{24\cdots 24}a^{32}+\frac{39\cdots 07}{12\cdots 12}a^{30}+\frac{48\cdots 09}{12\cdots 12}a^{28}+\frac{60\cdots 51}{24\cdots 24}a^{26}+\frac{10\cdots 87}{61\cdots 56}a^{24}-\frac{54\cdots 65}{61\cdots 56}a^{22}-\frac{11\cdots 81}{15\cdots 64}a^{20}-\frac{18\cdots 89}{61\cdots 56}a^{18}-\frac{12\cdots 81}{15\cdots 64}a^{16}-\frac{22\cdots 83}{15\cdots 64}a^{14}-\frac{66\cdots 25}{38\cdots 41}a^{12}-\frac{10\cdots 03}{76\cdots 82}a^{10}-\frac{27\cdots 14}{38\cdots 41}a^{8}-\frac{87\cdots 74}{38\cdots 41}a^{6}-\frac{29\cdots 31}{76\cdots 82}a^{4}-\frac{10\cdots 95}{38\cdots 41}a^{2}-\frac{26\cdots 36}{38\cdots 41}$, $\frac{19\cdots 25}{98\cdots 96}a^{34}+\frac{16\cdots 33}{12\cdots 12}a^{32}+\frac{10\cdots 31}{24\cdots 24}a^{30}+\frac{10\cdots 53}{15\cdots 64}a^{28}+\frac{19\cdots 11}{24\cdots 24}a^{26}+\frac{18\cdots 61}{30\cdots 28}a^{24}+\frac{19\cdots 95}{61\cdots 56}a^{22}+\frac{91\cdots 25}{76\cdots 82}a^{20}+\frac{19\cdots 03}{61\cdots 56}a^{18}+\frac{38\cdots 51}{61\cdots 56}a^{16}+\frac{13\cdots 05}{15\cdots 64}a^{14}+\frac{33\cdots 97}{38\cdots 41}a^{12}+\frac{44\cdots 17}{76\cdots 82}a^{10}+\frac{99\cdots 07}{38\cdots 41}a^{8}+\frac{26\cdots 82}{38\cdots 41}a^{6}+\frac{39\cdots 92}{38\cdots 41}a^{4}+\frac{24\cdots 25}{38\cdots 41}a^{2}+\frac{33\cdots 12}{38\cdots 41}$, $\frac{60\cdots 21}{98\cdots 96}a^{34}+\frac{20\cdots 47}{49\cdots 48}a^{32}+\frac{15\cdots 59}{12\cdots 12}a^{30}+\frac{50\cdots 49}{24\cdots 24}a^{28}+\frac{54\cdots 73}{24\cdots 24}a^{26}+\frac{39\cdots 81}{24\cdots 24}a^{24}+\frac{31\cdots 21}{38\cdots 41}a^{22}+\frac{36\cdots 69}{12\cdots 12}a^{20}+\frac{47\cdots 99}{61\cdots 56}a^{18}+\frac{44\cdots 33}{30\cdots 28}a^{16}+\frac{14\cdots 03}{76\cdots 82}a^{14}+\frac{14\cdots 45}{76\cdots 82}a^{12}+\frac{46\cdots 47}{38\cdots 41}a^{10}+\frac{40\cdots 95}{76\cdots 82}a^{8}+\frac{54\cdots 21}{38\cdots 41}a^{6}+\frac{16\cdots 39}{76\cdots 82}a^{4}+\frac{53\cdots 00}{38\cdots 41}a^{2}+\frac{64\cdots 17}{38\cdots 41}$, $\frac{56\cdots 45}{98\cdots 96}a^{34}+\frac{50\cdots 87}{12\cdots 12}a^{32}+\frac{32\cdots 07}{24\cdots 24}a^{30}+\frac{73\cdots 83}{30\cdots 28}a^{28}+\frac{70\cdots 09}{24\cdots 24}a^{26}+\frac{14\cdots 23}{61\cdots 56}a^{24}+\frac{40\cdots 09}{30\cdots 28}a^{22}+\frac{16\cdots 11}{30\cdots 28}a^{20}+\frac{97\cdots 33}{61\cdots 56}a^{18}+\frac{51\cdots 51}{15\cdots 64}a^{16}+\frac{77\cdots 05}{15\cdots 64}a^{14}+\frac{16\cdots 77}{30\cdots 28}a^{12}+\frac{30\cdots 45}{76\cdots 82}a^{10}+\frac{14\cdots 49}{76\cdots 82}a^{8}+\frac{22\cdots 59}{38\cdots 41}a^{6}+\frac{71\cdots 41}{76\cdots 82}a^{4}+\frac{23\cdots 19}{38\cdots 41}a^{2}+\frac{30\cdots 28}{38\cdots 41}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 28122649019657.055 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 28122649019657.055 \cdot 10893133}{2\cdot\sqrt{52733281945045886724167383478270850720626086921526306402773390818541568}}\cr\approx \mathstrut & 0.155372540556310 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^36 + 68*x^34 + 2018*x^32 + 34520*x^30 + 379376*x^28 + 2832128*x^26 + 14836664*x^24 + 55646624*x^22 + 151170256*x^20 + 298819648*x^18 + 428794592*x^16 + 442226304*x^14 + 321513984*x^12 + 159622144*x^10 + 51473664*x^8 + 9968640*x^6 + 1025280*x^4 + 46080*x^2 + 512) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^36 + 68*x^34 + 2018*x^32 + 34520*x^30 + 379376*x^28 + 2832128*x^26 + 14836664*x^24 + 55646624*x^22 + 151170256*x^20 + 298819648*x^18 + 428794592*x^16 + 442226304*x^14 + 321513984*x^12 + 159622144*x^10 + 51473664*x^8 + 9968640*x^6 + 1025280*x^4 + 46080*x^2 + 512, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 + 68*x^34 + 2018*x^32 + 34520*x^30 + 379376*x^28 + 2832128*x^26 + 14836664*x^24 + 55646624*x^22 + 151170256*x^20 + 298819648*x^18 + 428794592*x^16 + 442226304*x^14 + 321513984*x^12 + 159622144*x^10 + 51473664*x^8 + 9968640*x^6 + 1025280*x^4 + 46080*x^2 + 512); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^36 + 68*x^34 + 2018*x^32 + 34520*x^30 + 379376*x^28 + 2832128*x^26 + 14836664*x^24 + 55646624*x^22 + 151170256*x^20 + 298819648*x^18 + 428794592*x^16 + 442226304*x^14 + 321513984*x^12 + 159622144*x^10 + 51473664*x^8 + 9968640*x^6 + 1025280*x^4 + 46080*x^2 + 512); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$

Intermediate fields

\(\Q(\sqrt{2}) \), 3.3.361.1, 4.0.2048.2, 6.6.66724352.1, \(\Q(\zeta_{19})^+\), 12.0.145887695661298614272.69, 18.18.38713951190154487490850848768.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $36$ $36$ ${\href{/padicField/7.3.0.1}{3} }^{12}$ ${\href{/padicField/11.12.0.1}{12} }^{3}$ $36$ ${\href{/padicField/17.9.0.1}{9} }^{4}$ R ${\href{/padicField/23.9.0.1}{9} }^{4}$ $36$ ${\href{/padicField/31.6.0.1}{6} }^{6}$ ${\href{/padicField/37.4.0.1}{4} }^{9}$ $18^{2}$ $36$ $18^{2}$ $36$ $36$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $36$$4$$9$$99$
\(19\) Copy content Toggle raw display Deg $36$$9$$4$$32$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)