Normalized defining polynomial
\( x^{36} - x^{33} - 70 x^{30} + 1289 x^{27} + 2848 x^{24} - 33978 x^{21} + 415031 x^{18} - 2654421 x^{15} + 8225230 x^{12} + 50229628 x^{9} + 90247619 x^{6} + 275010364 x^{3} + 594823321 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} + \frac{5}{13} a^{15} + \frac{5}{13} a^{9} + \frac{5}{13} a^{3} - \frac{1}{13}$, $\frac{1}{13} a^{19} + \frac{5}{13} a^{16} + \frac{5}{13} a^{10} + \frac{5}{13} a^{4} - \frac{1}{13} a$, $\frac{1}{13} a^{20} + \frac{5}{13} a^{17} + \frac{5}{13} a^{11} + \frac{5}{13} a^{5} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{21} + \frac{1}{13} a^{15} + \frac{5}{13} a^{12} + \frac{1}{13} a^{9} + \frac{5}{13} a^{6} + \frac{5}{13}$, $\frac{1}{13} a^{22} + \frac{1}{13} a^{16} + \frac{5}{13} a^{13} + \frac{1}{13} a^{10} + \frac{5}{13} a^{7} + \frac{5}{13} a$, $\frac{1}{13} a^{23} + \frac{1}{13} a^{17} + \frac{5}{13} a^{14} + \frac{1}{13} a^{11} + \frac{5}{13} a^{8} + \frac{5}{13} a^{2}$, $\frac{1}{13} a^{24} + \frac{1}{13} a^{12} + \frac{1}{13}$, $\frac{1}{13} a^{25} + \frac{1}{13} a^{13} + \frac{1}{13} a$, $\frac{1}{13} a^{26} + \frac{1}{13} a^{14} + \frac{1}{13} a^{2}$, $\frac{1}{26} a^{27} - \frac{6}{13} a^{15} - \frac{1}{2} a^{9} - \frac{6}{13} a^{3} - \frac{1}{2}$, $\frac{1}{26} a^{28} - \frac{6}{13} a^{16} - \frac{1}{2} a^{10} - \frac{6}{13} a^{4} - \frac{1}{2} a$, $\frac{1}{26} a^{29} - \frac{6}{13} a^{17} - \frac{1}{2} a^{11} - \frac{6}{13} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4112401046} a^{30} - \frac{25393591}{4112401046} a^{27} + \frac{12696760}{2056200523} a^{24} + \frac{14910783}{2056200523} a^{21} - \frac{31936432}{2056200523} a^{18} + \frac{454998186}{2056200523} a^{15} - \frac{1362198399}{4112401046} a^{12} + \frac{1864147897}{4112401046} a^{9} - \frac{722929869}{2056200523} a^{6} - \frac{889789065}{4112401046} a^{3} + \frac{484278341}{4112401046}$, $\frac{1}{119259630334} a^{31} - \frac{408119973}{59629815167} a^{28} - \frac{1885334492}{59629815167} a^{25} + \frac{173080054}{59629815167} a^{22} + \frac{442571381}{59629815167} a^{19} + \frac{1562183083}{59629815167} a^{16} + \frac{16985437037}{119259630334} a^{13} + \frac{22996687253}{59629815167} a^{10} - \frac{16381687698}{59629815167} a^{7} - \frac{44228169319}{119259630334} a^{4} - \frac{12648656416}{59629815167} a$, $\frac{1}{3458529279686} a^{32} + \frac{3770668913}{3458529279686} a^{29} - \frac{1885334492}{1729264639843} a^{26} + \frac{9346897772}{1729264639843} a^{23} - \frac{54600334927}{1729264639843} a^{20} - \frac{649778874895}{1729264639843} a^{17} + \frac{1062800656889}{3458529279686} a^{14} - \frac{426458237971}{3458529279686} a^{11} + \frac{89117216059}{1729264639843} a^{8} + \frac{1496973207305}{3458529279686} a^{5} + \frac{951714274135}{3458529279686} a^{2}$, $\frac{1}{6973645287981629495856543618245300236606} a^{33} + \frac{51036087181267384091481883552}{3486822643990814747928271809122650118303} a^{30} - \frac{86926238240929785050756889811163454825}{6973645287981629495856543618245300236606} a^{27} + \frac{6647511320500414305427084939751359722}{3486822643990814747928271809122650118303} a^{24} + \frac{74766120849022868006383727049870262044}{3486822643990814747928271809122650118303} a^{21} - \frac{41448500183541055810188561541387575705}{3486822643990814747928271809122650118303} a^{18} - \frac{1386106997806534965219284602476782902587}{6973645287981629495856543618245300236606} a^{15} - \frac{800493848768396325112497377374705298343}{3486822643990814747928271809122650118303} a^{12} - \frac{3464089432409989571837831256201566822311}{6973645287981629495856543618245300236606} a^{9} - \frac{843127833454345736774598628208875805397}{6973645287981629495856543618245300236606} a^{6} + \frac{1132507690275387098414210575131388904649}{3486822643990814747928271809122650118303} a^{3} - \frac{125456187757004744073520089343065253}{285934039443258415509309263120476454}$, $\frac{1}{202235713351467255379839764929113706861574} a^{34} + \frac{51036087181267384091481883552}{101117856675733627689919882464556853430787} a^{31} - \frac{982223061733376555429143931977064451571}{101117856675733627689919882464556853430787} a^{28} + \frac{811298890702996125365797502429593694715}{101117856675733627689919882464556853430787} a^{25} + \frac{2220503132535678097500704840356116488692}{101117856675733627689919882464556853430787} a^{22} + \frac{2372505637963946077370922690928139429274}{101117856675733627689919882464556853430787} a^{19} + \frac{28654211165806638247701210983810664270485}{202235713351467255379839764929113706861574} a^{16} - \frac{20648561206869957197934967675457482894837}{101117856675733627689919882464556853430787} a^{13} - \frac{48535933283620161979263794912093279229915}{101117856675733627689919882464556853430787} a^{10} + \frac{27587887571393836054025156123098886697689}{202235713351467255379839764929113706861574} a^{7} - \frac{13887651391531199508046037218012334681887}{101117856675733627689919882464556853430787} a^{4} + \frac{239702140148020952059624752859740546}{4146043571927247024884984315246908583} a$, $\frac{1}{5864835687192550406015353182944297498985646} a^{35} + \frac{51036087181267384091481883552}{2932417843596275203007676591472148749492823} a^{32} + \frac{83596817217538624165227766529132439384447}{5864835687192550406015353182944297498985646} a^{29} + \frac{24146188892795371746116539609635021409512}{2932417843596275203007676591472148749492823} a^{26} + \frac{56668579804084554545919103090502114489885}{2932417843596275203007676591472148749492823} a^{23} + \frac{111268658981061698974207719191220135431660}{2932417843596275203007676591472148749492823} a^{20} - \frac{1822580395666855160998524329521153267770077}{5864835687192550406015353182944297498985646} a^{17} - \frac{129544714549967710094771764175749478897223}{2932417843596275203007676591472148749492823} a^{14} - \frac{1427160596686505734341319889934895938203259}{5864835687192550406015353182944297498985646} a^{11} - \frac{1450288479227789953260188510666578201906121}{5864835687192550406015353182944297498985646} a^{8} + \frac{1331757672062462461288580090964167330204740}{2932417843596275203007676591472148749492823} a^{5} - \frac{54694867869197322350119387920258610051}{240470527171780327443329090284320697814} a^{2}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6921108753981151158125696013}{8292087143854494049769968630493817166} a^{34} - \frac{941567415194979960768417862}{142967019721629207754654631560238227} a^{31} - \frac{150652800368259247394568166143}{4146043571927247024884984315246908583} a^{28} + \frac{6095073959946102864921771660252}{4146043571927247024884984315246908583} a^{25} - \frac{26254952032201136127001100887891}{4146043571927247024884984315246908583} a^{22} - \frac{105340678329434777534244437457400}{4146043571927247024884984315246908583} a^{19} + \frac{5039082461939296081592750135788093}{8292087143854494049769968630493817166} a^{16} - \frac{21832931462959167005202935547890502}{4146043571927247024884984315246908583} a^{13} + \frac{111571895622143247251603156194403821}{4146043571927247024884984315246908583} a^{10} - \frac{374570198742050087237942648772652019}{8292087143854494049769968630493817166} a^{7} - \frac{18185607450678345871428102267198351}{142967019721629207754654631560238227} a^{4} + \frac{2347059412181283559934910054110578416}{4146043571927247024884984315246908583} a \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||