Normalized defining polynomial
\( x^{36} - 136 x^{27} - 1187 x^{18} - 2676888 x^{9} + 387420489 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{74} a^{18} - \frac{31}{74} a^{9} - \frac{1}{74}$, $\frac{1}{222} a^{19} - \frac{31}{222} a^{10} + \frac{73}{222} a$, $\frac{1}{666} a^{20} - \frac{253}{666} a^{11} + \frac{73}{666} a^{2}$, $\frac{1}{1998} a^{21} - \frac{919}{1998} a^{12} - \frac{593}{1998} a^{3}$, $\frac{1}{5994} a^{22} + \frac{1079}{5994} a^{13} + \frac{1405}{5994} a^{4}$, $\frac{1}{17982} a^{23} + \frac{1079}{17982} a^{14} - \frac{4589}{17982} a^{5}$, $\frac{1}{53946} a^{24} - \frac{16903}{53946} a^{15} + \frac{13393}{53946} a^{6}$, $\frac{1}{161838} a^{25} + \frac{37043}{161838} a^{16} - \frac{40553}{161838} a^{7}$, $\frac{1}{485514} a^{26} - \frac{124795}{485514} a^{17} - \frac{40553}{485514} a^{8}$, $\frac{1}{1728915354} a^{27} - \frac{796}{728271} a^{18} + \frac{49207}{728271} a^{9} - \frac{8445}{87838}$, $\frac{1}{5186746062} a^{28} - \frac{796}{2184813} a^{19} - \frac{679064}{2184813} a^{10} - \frac{96283}{263514} a$, $\frac{1}{15560238186} a^{29} - \frac{796}{6554439} a^{20} - \frac{679064}{6554439} a^{11} + \frac{167231}{790542} a^{2}$, $\frac{1}{46680714558} a^{30} - \frac{796}{19663317} a^{21} - \frac{679064}{19663317} a^{12} - \frac{623311}{2371626} a^{3}$, $\frac{1}{140042143674} a^{31} - \frac{796}{58989951} a^{22} + \frac{18984253}{58989951} a^{13} + \frac{1748315}{7114878} a^{4}$, $\frac{1}{420126431022} a^{32} - \frac{796}{176969853} a^{23} + \frac{18984253}{176969853} a^{14} - \frac{5366563}{21344634} a^{5}$, $\frac{1}{1260379293066} a^{33} - \frac{796}{530909559} a^{24} + \frac{18984253}{530909559} a^{15} - \frac{26711197}{64033902} a^{6}$, $\frac{1}{3781137879198} a^{34} - \frac{796}{1592728677} a^{25} + \frac{18984253}{1592728677} a^{16} - \frac{90745099}{192101706} a^{7}$, $\frac{1}{11343413637594} a^{35} - \frac{796}{4778186031} a^{26} + \frac{18984253}{4778186031} a^{17} + \frac{101356607}{576305118} a^{8}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2108}{2593373031} a^{28} - \frac{31}{4369626} a^{19} - \frac{15467}{4369626} a^{10} + \frac{203391}{87838} a \) (order $54$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | R | $18^{2}$ | $18^{2}$ | R | $18^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||