Properties

Label 36.0.48526755753...5969.1
Degree $36$
Signature $[0, 18]$
Discriminant $3^{90}\cdot 11^{18}$
Root discriminant $51.70$
Ramified primes $3, 11$
Class number Not computed
Class group Not computed
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![387420489, 0, 0, 0, 0, 0, 0, 0, 0, -2676888, 0, 0, 0, 0, 0, 0, 0, 0, -1187, 0, 0, 0, 0, 0, 0, 0, 0, -136, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489)
 
gp: K = bnfinit(x^36 - 136*x^27 - 1187*x^18 - 2676888*x^9 + 387420489, 1)
 

Normalized defining polynomial

\( x^{36} - 136 x^{27} - 1187 x^{18} - 2676888 x^{9} + 387420489 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(48526755753740305052512669329205843844959387036328330042655969=3^{90}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $51.70$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(297=3^{3}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{297}(1,·)$, $\chi_{297}(131,·)$, $\chi_{297}(133,·)$, $\chi_{297}(263,·)$, $\chi_{297}(265,·)$, $\chi_{297}(10,·)$, $\chi_{297}(142,·)$, $\chi_{297}(274,·)$, $\chi_{297}(23,·)$, $\chi_{297}(155,·)$, $\chi_{297}(287,·)$, $\chi_{297}(32,·)$, $\chi_{297}(34,·)$, $\chi_{297}(164,·)$, $\chi_{297}(166,·)$, $\chi_{297}(296,·)$, $\chi_{297}(43,·)$, $\chi_{297}(175,·)$, $\chi_{297}(56,·)$, $\chi_{297}(188,·)$, $\chi_{297}(65,·)$, $\chi_{297}(67,·)$, $\chi_{297}(197,·)$, $\chi_{297}(199,·)$, $\chi_{297}(76,·)$, $\chi_{297}(208,·)$, $\chi_{297}(89,·)$, $\chi_{297}(221,·)$, $\chi_{297}(98,·)$, $\chi_{297}(100,·)$, $\chi_{297}(230,·)$, $\chi_{297}(232,·)$, $\chi_{297}(109,·)$, $\chi_{297}(241,·)$, $\chi_{297}(122,·)$, $\chi_{297}(254,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{74} a^{18} - \frac{31}{74} a^{9} - \frac{1}{74}$, $\frac{1}{222} a^{19} - \frac{31}{222} a^{10} + \frac{73}{222} a$, $\frac{1}{666} a^{20} - \frac{253}{666} a^{11} + \frac{73}{666} a^{2}$, $\frac{1}{1998} a^{21} - \frac{919}{1998} a^{12} - \frac{593}{1998} a^{3}$, $\frac{1}{5994} a^{22} + \frac{1079}{5994} a^{13} + \frac{1405}{5994} a^{4}$, $\frac{1}{17982} a^{23} + \frac{1079}{17982} a^{14} - \frac{4589}{17982} a^{5}$, $\frac{1}{53946} a^{24} - \frac{16903}{53946} a^{15} + \frac{13393}{53946} a^{6}$, $\frac{1}{161838} a^{25} + \frac{37043}{161838} a^{16} - \frac{40553}{161838} a^{7}$, $\frac{1}{485514} a^{26} - \frac{124795}{485514} a^{17} - \frac{40553}{485514} a^{8}$, $\frac{1}{1728915354} a^{27} - \frac{796}{728271} a^{18} + \frac{49207}{728271} a^{9} - \frac{8445}{87838}$, $\frac{1}{5186746062} a^{28} - \frac{796}{2184813} a^{19} - \frac{679064}{2184813} a^{10} - \frac{96283}{263514} a$, $\frac{1}{15560238186} a^{29} - \frac{796}{6554439} a^{20} - \frac{679064}{6554439} a^{11} + \frac{167231}{790542} a^{2}$, $\frac{1}{46680714558} a^{30} - \frac{796}{19663317} a^{21} - \frac{679064}{19663317} a^{12} - \frac{623311}{2371626} a^{3}$, $\frac{1}{140042143674} a^{31} - \frac{796}{58989951} a^{22} + \frac{18984253}{58989951} a^{13} + \frac{1748315}{7114878} a^{4}$, $\frac{1}{420126431022} a^{32} - \frac{796}{176969853} a^{23} + \frac{18984253}{176969853} a^{14} - \frac{5366563}{21344634} a^{5}$, $\frac{1}{1260379293066} a^{33} - \frac{796}{530909559} a^{24} + \frac{18984253}{530909559} a^{15} - \frac{26711197}{64033902} a^{6}$, $\frac{1}{3781137879198} a^{34} - \frac{796}{1592728677} a^{25} + \frac{18984253}{1592728677} a^{16} - \frac{90745099}{192101706} a^{7}$, $\frac{1}{11343413637594} a^{35} - \frac{796}{4778186031} a^{26} + \frac{18984253}{4778186031} a^{17} + \frac{101356607}{576305118} a^{8}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{2108}{2593373031} a^{28} - \frac{31}{4369626} a^{19} - \frac{15467}{4369626} a^{10} + \frac{203391}{87838} a \) (order $54$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{33}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(\zeta_{9})\), 6.0.8732691.1, 6.6.26198073.1, \(\Q(\zeta_{27})^+\), 12.0.686339028913329.1, \(\Q(\zeta_{27})\), 18.0.2322038274967832964613417227771.2, 18.18.6966114824903498893840251683313.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18^{2}$ R $18^{2}$ $18^{2}$ R $18^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
11Data not computed