# Oscar code for working with number field 36.0.459146050215773460843525344476713987772454059613596693862733.1 # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to compile (this depends on the state of your Julia REPL), and/or to execute (this depends on the field). # Define the number field: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 + 3*x^34 - x^33 + 9*x^32 - 6*x^31 + 28*x^30 - 27*x^29 + 90*x^28 - 109*x^27 + 297*x^26 - 417*x^25 + 1000*x^24 + 1845*x^23 + 3417*x^22 + 4535*x^21 + 8406*x^20 + 10188*x^19 + 20683*x^18 + 22158*x^17 + 51861*x^16 + 45791*x^15 + 133425*x^14 + 85512*x^13 + 354484*x^12 + 123111*x^11 + 42756*x^10 + 14849*x^9 + 5157*x^8 + 1791*x^7 + 622*x^6 + 216*x^5 + 75*x^4 + 26*x^3 + 9*x^2 + 3*x + 1) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant((OK))) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 + 3*x^34 - x^33 + 9*x^32 - 6*x^31 + 28*x^30 - 27*x^29 + 90*x^28 - 109*x^27 + 297*x^26 - 417*x^25 + 1000*x^24 + 1845*x^23 + 3417*x^22 + 4535*x^21 + 8406*x^20 + 10188*x^19 + 20683*x^18 + 22158*x^17 + 51861*x^16 + 45791*x^15 + 133425*x^14 + 85512*x^13 + 354484*x^12 + 123111*x^11 + 42756*x^10 + 14849*x^9 + 5157*x^8 + 1791*x^7 + 622*x^6 + 216*x^5 + 75*x^4 + 26*x^3 + 9*x^2 + 3*x + 1); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); G, transitive_group_identification(G) # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]