Normalized defining polynomial
\( x^{36} + 3 x^{34} - x^{33} + 9 x^{32} - 6 x^{31} + 28 x^{30} - 27 x^{29} + 90 x^{28} - 109 x^{27} + 297 x^{26} - 417 x^{25} + 1000 x^{24} + 1845 x^{23} + 3417 x^{22} + 4535 x^{21} + 8406 x^{20} + 10188 x^{19} + 20683 x^{18} + 22158 x^{17} + 51861 x^{16} + 45791 x^{15} + 133425 x^{14} + 85512 x^{13} + 354484 x^{12} + 123111 x^{11} + 42756 x^{10} + 14849 x^{9} + 5157 x^{8} + 1791 x^{7} + 622 x^{6} + 216 x^{5} + 75 x^{4} + 26 x^{3} + 9 x^{2} + 3 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $\frac{1}{405821287} a^{25} + \frac{179067424}{405821287} a^{24} + \frac{3652395}{405821287} a^{23} + \frac{131380984}{405821287} a^{22} - \frac{168110239}{405821287} a^{21} - \frac{15330730}{405821287} a^{20} + \frac{175930873}{405821287} a^{19} + \frac{122118049}{405821287} a^{18} + \frac{137302062}{405821287} a^{17} + \frac{190423274}{405821287} a^{16} - \frac{116033150}{405821287} a^{15} + \frac{28146473}{405821287} a^{14} - \frac{132701437}{405821287} a^{13} + \frac{100237981}{405821287} a^{12} + \frac{20436748}{405821287} a^{11} - \frac{132703546}{405821287} a^{10} - \frac{38927737}{405821287} a^{9} - \frac{12726099}{405821287} a^{8} + \frac{15920335}{405821287} a^{7} + \frac{749440}{405821287} a^{6} + \frac{60487104}{405821287} a^{5} - \frac{13672015}{405821287} a^{4} + \frac{180711872}{405821287} a^{3} - \frac{101503149}{405821287} a^{2} + \frac{149986344}{405821287} a - \frac{79400032}{405821287}$, $\frac{1}{405821287} a^{26} - \frac{100234588}{405821287} a^{13} - \frac{145640894}{405821287}$, $\frac{1}{405821287} a^{27} - \frac{100234588}{405821287} a^{14} - \frac{145640894}{405821287} a$, $\frac{1}{405821287} a^{28} - \frac{100234588}{405821287} a^{15} - \frac{145640894}{405821287} a^{2}$, $\frac{1}{405821287} a^{29} - \frac{100234588}{405821287} a^{16} - \frac{145640894}{405821287} a^{3}$, $\frac{1}{405821287} a^{30} - \frac{100234588}{405821287} a^{17} - \frac{145640894}{405821287} a^{4}$, $\frac{1}{405821287} a^{31} - \frac{100234588}{405821287} a^{18} - \frac{145640894}{405821287} a^{5}$, $\frac{1}{405821287} a^{32} - \frac{100234588}{405821287} a^{19} - \frac{145640894}{405821287} a^{6}$, $\frac{1}{405821287} a^{33} - \frac{100234588}{405821287} a^{20} - \frac{145640894}{405821287} a^{7}$, $\frac{1}{405821287} a^{34} - \frac{100234588}{405821287} a^{21} - \frac{145640894}{405821287} a^{8}$, $\frac{1}{405821287} a^{35} - \frac{100234588}{405821287} a^{22} - \frac{145640894}{405821287} a^{9}$
Class group and class number
$C_{3}\times C_{3}\times C_{9}\times C_{9}$, which has order $729$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{10251}{405821287} a^{29} + \frac{34737096}{405821287} a^{16} - \frac{9688000409}{405821287} a^{3} \) (order $26$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20980577392492.816 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{36}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 13 | Data not computed | ||||||