Normalized defining polynomial
\( x^{36} + 54 x^{32} + 1143 x^{28} + 12006 x^{24} + 65367 x^{20} + 175806 x^{16} + 203838 x^{12} + 70632 x^{8} + 5481 x^{4} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{11543228840026773577} a^{32} + \frac{5192013369693317289}{11543228840026773577} a^{28} + \frac{2124378184069870956}{11543228840026773577} a^{24} + \frac{3532654901869503285}{11543228840026773577} a^{20} + \frac{182151398991803673}{11543228840026773577} a^{16} + \frac{2574207142871799287}{11543228840026773577} a^{12} + \frac{2950273414691718692}{11543228840026773577} a^{8} - \frac{4022655650947927519}{11543228840026773577} a^{4} - \frac{2446071674144177440}{11543228840026773577}$, $\frac{1}{11543228840026773577} a^{33} + \frac{5192013369693317289}{11543228840026773577} a^{29} + \frac{2124378184069870956}{11543228840026773577} a^{25} + \frac{3532654901869503285}{11543228840026773577} a^{21} + \frac{182151398991803673}{11543228840026773577} a^{17} + \frac{2574207142871799287}{11543228840026773577} a^{13} + \frac{2950273414691718692}{11543228840026773577} a^{9} - \frac{4022655650947927519}{11543228840026773577} a^{5} - \frac{2446071674144177440}{11543228840026773577} a$, $\frac{1}{11543228840026773577} a^{34} + \frac{5192013369693317289}{11543228840026773577} a^{30} + \frac{2124378184069870956}{11543228840026773577} a^{26} + \frac{3532654901869503285}{11543228840026773577} a^{22} + \frac{182151398991803673}{11543228840026773577} a^{18} + \frac{2574207142871799287}{11543228840026773577} a^{14} + \frac{2950273414691718692}{11543228840026773577} a^{10} - \frac{4022655650947927519}{11543228840026773577} a^{6} - \frac{2446071674144177440}{11543228840026773577} a^{2}$, $\frac{1}{11543228840026773577} a^{35} + \frac{5192013369693317289}{11543228840026773577} a^{31} + \frac{2124378184069870956}{11543228840026773577} a^{27} + \frac{3532654901869503285}{11543228840026773577} a^{23} + \frac{182151398991803673}{11543228840026773577} a^{19} + \frac{2574207142871799287}{11543228840026773577} a^{15} + \frac{2950273414691718692}{11543228840026773577} a^{11} - \frac{4022655650947927519}{11543228840026773577} a^{7} - \frac{2446071674144177440}{11543228840026773577} a^{3}$
Class group and class number
$C_{6327}$, which has order $6327$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1325536515129434490}{11543228840026773577} a^{35} - \frac{71581407819880161132}{11543228840026773577} a^{31} - \frac{1515219656144029615117}{11543228840026773577} a^{27} - \frac{15917168575556794861326}{11543228840026773577} a^{23} - \frac{86675424330935262178917}{11543228840026773577} a^{19} - \frac{233194425355002444858162}{11543228840026773577} a^{15} - \frac{270608267870879096914902}{11543228840026773577} a^{11} - \frac{94066799521966279280748}{11543228840026773577} a^{7} - \frac{7357328477125103496285}{11543228840026773577} a^{3} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44130898078069.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||