Properties

Label 36.0.45796269575...5056.1
Degree $36$
Signature $[0, 18]$
Discriminant $2^{72}\cdot 3^{88}$
Root discriminant $58.66$
Ramified primes $2, 3$
Class number $6327$ (GRH)
Class group $[6327]$ (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, 0, 5481, 0, 0, 0, 70632, 0, 0, 0, 203838, 0, 0, 0, 175806, 0, 0, 0, 65367, 0, 0, 0, 12006, 0, 0, 0, 1143, 0, 0, 0, 54, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 54*x^32 + 1143*x^28 + 12006*x^24 + 65367*x^20 + 175806*x^16 + 203838*x^12 + 70632*x^8 + 5481*x^4 + 1)
 
gp: K = bnfinit(x^36 + 54*x^32 + 1143*x^28 + 12006*x^24 + 65367*x^20 + 175806*x^16 + 203838*x^12 + 70632*x^8 + 5481*x^4 + 1, 1)
 

Normalized defining polynomial

\( x^{36} + 54 x^{32} + 1143 x^{28} + 12006 x^{24} + 65367 x^{20} + 175806 x^{16} + 203838 x^{12} + 70632 x^{8} + 5481 x^{4} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4579626957516085526487220638656255445999152174466832174789165056=2^{72}\cdot 3^{88}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $58.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(216=2^{3}\cdot 3^{3}\)
Dirichlet character group:    $\lbrace$$\chi_{216}(1,·)$, $\chi_{216}(133,·)$, $\chi_{216}(7,·)$, $\chi_{216}(139,·)$, $\chi_{216}(13,·)$, $\chi_{216}(145,·)$, $\chi_{216}(19,·)$, $\chi_{216}(151,·)$, $\chi_{216}(25,·)$, $\chi_{216}(157,·)$, $\chi_{216}(31,·)$, $\chi_{216}(163,·)$, $\chi_{216}(37,·)$, $\chi_{216}(169,·)$, $\chi_{216}(43,·)$, $\chi_{216}(175,·)$, $\chi_{216}(49,·)$, $\chi_{216}(181,·)$, $\chi_{216}(55,·)$, $\chi_{216}(187,·)$, $\chi_{216}(61,·)$, $\chi_{216}(193,·)$, $\chi_{216}(67,·)$, $\chi_{216}(199,·)$, $\chi_{216}(73,·)$, $\chi_{216}(205,·)$, $\chi_{216}(79,·)$, $\chi_{216}(211,·)$, $\chi_{216}(85,·)$, $\chi_{216}(91,·)$, $\chi_{216}(97,·)$, $\chi_{216}(103,·)$, $\chi_{216}(109,·)$, $\chi_{216}(115,·)$, $\chi_{216}(121,·)$, $\chi_{216}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{11543228840026773577} a^{32} + \frac{5192013369693317289}{11543228840026773577} a^{28} + \frac{2124378184069870956}{11543228840026773577} a^{24} + \frac{3532654901869503285}{11543228840026773577} a^{20} + \frac{182151398991803673}{11543228840026773577} a^{16} + \frac{2574207142871799287}{11543228840026773577} a^{12} + \frac{2950273414691718692}{11543228840026773577} a^{8} - \frac{4022655650947927519}{11543228840026773577} a^{4} - \frac{2446071674144177440}{11543228840026773577}$, $\frac{1}{11543228840026773577} a^{33} + \frac{5192013369693317289}{11543228840026773577} a^{29} + \frac{2124378184069870956}{11543228840026773577} a^{25} + \frac{3532654901869503285}{11543228840026773577} a^{21} + \frac{182151398991803673}{11543228840026773577} a^{17} + \frac{2574207142871799287}{11543228840026773577} a^{13} + \frac{2950273414691718692}{11543228840026773577} a^{9} - \frac{4022655650947927519}{11543228840026773577} a^{5} - \frac{2446071674144177440}{11543228840026773577} a$, $\frac{1}{11543228840026773577} a^{34} + \frac{5192013369693317289}{11543228840026773577} a^{30} + \frac{2124378184069870956}{11543228840026773577} a^{26} + \frac{3532654901869503285}{11543228840026773577} a^{22} + \frac{182151398991803673}{11543228840026773577} a^{18} + \frac{2574207142871799287}{11543228840026773577} a^{14} + \frac{2950273414691718692}{11543228840026773577} a^{10} - \frac{4022655650947927519}{11543228840026773577} a^{6} - \frac{2446071674144177440}{11543228840026773577} a^{2}$, $\frac{1}{11543228840026773577} a^{35} + \frac{5192013369693317289}{11543228840026773577} a^{31} + \frac{2124378184069870956}{11543228840026773577} a^{27} + \frac{3532654901869503285}{11543228840026773577} a^{23} + \frac{182151398991803673}{11543228840026773577} a^{19} + \frac{2574207142871799287}{11543228840026773577} a^{15} + \frac{2950273414691718692}{11543228840026773577} a^{11} - \frac{4022655650947927519}{11543228840026773577} a^{7} - \frac{2446071674144177440}{11543228840026773577} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6327}$, which has order $6327$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1325536515129434490}{11543228840026773577} a^{35} - \frac{71581407819880161132}{11543228840026773577} a^{31} - \frac{1515219656144029615117}{11543228840026773577} a^{27} - \frac{15917168575556794861326}{11543228840026773577} a^{23} - \frac{86675424330935262178917}{11543228840026773577} a^{19} - \frac{233194425355002444858162}{11543228840026773577} a^{15} - \frac{270608267870879096914902}{11543228840026773577} a^{11} - \frac{94066799521966279280748}{11543228840026773577} a^{7} - \frac{7357328477125103496285}{11543228840026773577} a^{3} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 44130898078069.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{8})\), 6.6.3359232.1, 6.0.419904.1, 6.0.3359232.1, \(\Q(\zeta_{27})^+\), 12.0.722204136308736.1, 18.18.132173713091594538512566714368.1, 18.0.258151783382020583032356864.7, 18.0.132173713091594538512566714368.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $18^{2}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed