// Magma code for working with number field 36.0.4468717346860908762056395509492084398101221888000000000000000000000000000.1. // Some of these functions may take a long time to execute (this depends on the field). // Define the number field: R := PolynomialRing(Rationals()); K := NumberField(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125); // Defining polynomial: DefiningPolynomial(K); // Degree over Q: Degree(K); // Signature: Signature(K); // Discriminant: OK := Integers(K); Discriminant(OK); // Ramified primes: PrimeDivisors(Discriminant(OK)); // Autmorphisms: Automorphisms(K); // Integral basis: IntegralBasis(K); // Class group: ClassGroup(K); // Unit group: UK, fUK := UnitGroup(K); // Unit rank: UnitRank(K); // Generator for roots of unity: K!f(TU.1) where TU,f is TorsionUnitGroup(K); // Fundamental units: [K|fUK(g): g in Generators(UK)]; // Regulator: Regulator(K); // Analytic class number formula: /* self-contained Magma code snippet to compute the analytic class number formula */ Qx := PolynomialRing(Rationals()); K := NumberField(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK))); // Intermediate fields: L := Subfields(K); L[2..#L]; // Galois group: G = GaloisGroup(K); // Frobenius cycle types: // to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [ : pr in Factorization(p*Integers(K))];