Properties

Label 36.0.446...000.1
Degree $36$
Signature $[0, 18]$
Discriminant $4.469\times 10^{72}$
Root discriminant \(104.25\)
Ramified primes $2,3,5$
Class number not computed
Class group not computed
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125)
 
gp: K = bnfinit(y^36 + 90*y^34 + 3645*y^32 + 88050*y^30 + 1417950*y^28 + 16119000*y^26 + 133603875*y^24 + 822251250*y^22 + 3789888750*y^20 + 13095318750*y^18 + 33719118750*y^16 + 63846984375*y^14 + 86985140625*y^12 + 82533515625*y^10 + 52017187500*y^8 + 20334375000*y^6 + 4461328125*y^4 + 474609375*y^2 + 17578125, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125)
 

\( x^{36} + 90 x^{34} + 3645 x^{32} + 88050 x^{30} + 1417950 x^{28} + 16119000 x^{26} + 133603875 x^{24} + \cdots + 17578125 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(4468717346860908762056395509492084398101221888000000000000000000000000000\) \(\medspace = 2^{36}\cdot 3^{90}\cdot 5^{27}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(104.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{5/2}5^{3/4}\approx 104.24629667594421$
Ramified primes:   \(2\), \(3\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(540=2^{2}\cdot 3^{3}\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{540}(1,·)$, $\chi_{540}(263,·)$, $\chi_{540}(407,·)$, $\chi_{540}(143,·)$, $\chi_{540}(529,·)$, $\chi_{540}(23,·)$, $\chi_{540}(409,·)$, $\chi_{540}(287,·)$, $\chi_{540}(289,·)$, $\chi_{540}(421,·)$, $\chi_{540}(167,·)$, $\chi_{540}(169,·)$, $\chi_{540}(301,·)$, $\chi_{540}(47,·)$, $\chi_{540}(49,·)$, $\chi_{540}(181,·)$, $\chi_{540}(443,·)$, $\chi_{540}(61,·)$, $\chi_{540}(323,·)$, $\chi_{540}(203,·)$, $\chi_{540}(83,·)$, $\chi_{540}(469,·)$, $\chi_{540}(527,·)$, $\chi_{540}(347,·)$, $\chi_{540}(349,·)$, $\chi_{540}(481,·)$, $\chi_{540}(227,·)$, $\chi_{540}(229,·)$, $\chi_{540}(361,·)$, $\chi_{540}(107,·)$, $\chi_{540}(109,·)$, $\chi_{540}(241,·)$, $\chi_{540}(467,·)$, $\chi_{540}(503,·)$, $\chi_{540}(121,·)$, $\chi_{540}(383,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5}a^{4}$, $\frac{1}{5}a^{5}$, $\frac{1}{5}a^{6}$, $\frac{1}{5}a^{7}$, $\frac{1}{25}a^{8}$, $\frac{1}{25}a^{9}$, $\frac{1}{25}a^{10}$, $\frac{1}{25}a^{11}$, $\frac{1}{125}a^{12}$, $\frac{1}{125}a^{13}$, $\frac{1}{125}a^{14}$, $\frac{1}{125}a^{15}$, $\frac{1}{625}a^{16}$, $\frac{1}{625}a^{17}$, $\frac{1}{1875}a^{18}$, $\frac{1}{1875}a^{19}$, $\frac{1}{9375}a^{20}$, $\frac{1}{9375}a^{21}$, $\frac{1}{9375}a^{22}$, $\frac{1}{9375}a^{23}$, $\frac{1}{46875}a^{24}$, $\frac{1}{46875}a^{25}$, $\frac{1}{46875}a^{26}$, $\frac{1}{46875}a^{27}$, $\frac{1}{234375}a^{28}$, $\frac{1}{234375}a^{29}$, $\frac{1}{234375}a^{30}$, $\frac{1}{234375}a^{31}$, $\frac{1}{505078125}a^{32}-\frac{199}{101015625}a^{30}+\frac{172}{101015625}a^{28}+\frac{52}{6734375}a^{26}-\frac{7}{20203125}a^{24}-\frac{14}{1346875}a^{22}+\frac{58}{1346875}a^{20}-\frac{64}{269375}a^{18}+\frac{18}{269375}a^{16}+\frac{16}{10775}a^{14}+\frac{17}{53875}a^{12}+\frac{119}{10775}a^{10}-\frac{164}{10775}a^{8}+\frac{102}{2155}a^{6}+\frac{2}{431}a^{4}+\frac{83}{431}a^{2}+\frac{145}{431}$, $\frac{1}{505078125}a^{33}-\frac{199}{101015625}a^{31}+\frac{172}{101015625}a^{29}+\frac{52}{6734375}a^{27}-\frac{7}{20203125}a^{25}-\frac{14}{1346875}a^{23}+\frac{58}{1346875}a^{21}-\frac{64}{269375}a^{19}+\frac{18}{269375}a^{17}+\frac{16}{10775}a^{15}+\frac{17}{53875}a^{13}+\frac{119}{10775}a^{11}-\frac{164}{10775}a^{9}+\frac{102}{2155}a^{7}+\frac{2}{431}a^{5}+\frac{83}{431}a^{3}+\frac{145}{431}a$, $\frac{1}{56\!\cdots\!75}a^{34}-\frac{752728}{11\!\cdots\!75}a^{32}+\frac{637092272}{11\!\cdots\!75}a^{30}-\frac{3656342}{374184064765625}a^{28}+\frac{457973209}{74836812953125}a^{26}-\frac{47824727}{224510438859375}a^{24}-\frac{197007572}{44902087771875}a^{22}+\frac{748437637}{14967362590625}a^{20}+\frac{671251816}{8980417554375}a^{18}+\frac{935640359}{2993472518125}a^{16}+\frac{1012807872}{598694503625}a^{14}-\frac{49281216}{23947780145}a^{12}+\frac{2356512101}{119738900725}a^{10}+\frac{2329935526}{119738900725}a^{8}-\frac{2152770664}{23947780145}a^{6}+\frac{169919429}{23947780145}a^{4}+\frac{78972754}{4789556029}a^{2}-\frac{1788688379}{4789556029}$, $\frac{1}{56\!\cdots\!75}a^{35}-\frac{752728}{11\!\cdots\!75}a^{33}+\frac{637092272}{11\!\cdots\!75}a^{31}-\frac{3656342}{374184064765625}a^{29}+\frac{457973209}{74836812953125}a^{27}-\frac{47824727}{224510438859375}a^{25}-\frac{197007572}{44902087771875}a^{23}+\frac{748437637}{14967362590625}a^{21}+\frac{671251816}{8980417554375}a^{19}+\frac{935640359}{2993472518125}a^{17}+\frac{1012807872}{598694503625}a^{15}-\frac{49281216}{23947780145}a^{13}+\frac{2356512101}{119738900725}a^{11}+\frac{2329935526}{119738900725}a^{9}-\frac{2152770664}{23947780145}a^{7}+\frac{169919429}{23947780145}a^{5}+\frac{78972754}{4789556029}a^{3}-\frac{1788688379}{4789556029}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 + 90*x^34 + 3645*x^32 + 88050*x^30 + 1417950*x^28 + 16119000*x^26 + 133603875*x^24 + 822251250*x^22 + 3789888750*x^20 + 13095318750*x^18 + 33719118750*x^16 + 63846984375*x^14 + 86985140625*x^12 + 82533515625*x^10 + 52017187500*x^8 + 20334375000*x^6 + 4461328125*x^4 + 474609375*x^2 + 17578125);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 4.0.18000.1, 6.6.820125.1, \(\Q(\zeta_{27})^+\), 12.0.3099363912000000000.1, 18.18.1923380668327365689220703125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R $36$ ${\href{/padicField/11.9.0.1}{9} }^{4}$ $36$ ${\href{/padicField/17.12.0.1}{12} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{12}$ $36$ ${\href{/padicField/29.9.0.1}{9} }^{4}$ $18^{2}$ ${\href{/padicField/37.12.0.1}{12} }^{3}$ $18^{2}$ $36$ $36$ ${\href{/padicField/53.4.0.1}{4} }^{9}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $36$$2$$18$$36$
\(3\) Copy content Toggle raw display Deg $36$$18$$2$$90$
\(5\) Copy content Toggle raw display Deg $36$$4$$9$$27$