Normalized defining polynomial
\( x^{36} - 16 x^{33} + 470 x^{30} + 3624 x^{27} + 44003 x^{24} + 27532 x^{21} + 50596 x^{18} - 38116 x^{15} + 32635 x^{12} - 8692 x^{9} + 2129 x^{6} + 44 x^{3} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{17} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{26} a^{24} + \frac{3}{26} a^{21} - \frac{1}{13} a^{18} + \frac{3}{26} a^{15} + \frac{6}{13} a^{12} + \frac{1}{13} a^{9} - \frac{11}{26} a^{6} - \frac{1}{13} a^{3} + \frac{1}{26}$, $\frac{1}{26} a^{25} + \frac{3}{26} a^{22} - \frac{1}{13} a^{19} + \frac{3}{26} a^{16} + \frac{6}{13} a^{13} + \frac{1}{13} a^{10} - \frac{11}{26} a^{7} - \frac{1}{13} a^{4} + \frac{1}{26} a$, $\frac{1}{26} a^{26} + \frac{3}{26} a^{23} - \frac{1}{13} a^{20} + \frac{3}{26} a^{17} + \frac{6}{13} a^{14} + \frac{1}{13} a^{11} - \frac{11}{26} a^{8} - \frac{1}{13} a^{5} + \frac{1}{26} a^{2}$, $\frac{1}{442} a^{27} - \frac{3}{13} a^{21} - \frac{95}{442} a^{18} + \frac{2}{13} a^{15} - \frac{1}{13} a^{12} + \frac{50}{221} a^{9} - \frac{1}{13} a^{6} - \frac{4}{13} a^{3} - \frac{81}{442}$, $\frac{1}{442} a^{28} - \frac{3}{13} a^{22} - \frac{95}{442} a^{19} + \frac{2}{13} a^{16} - \frac{1}{13} a^{13} + \frac{50}{221} a^{10} - \frac{1}{13} a^{7} - \frac{4}{13} a^{4} - \frac{81}{442} a$, $\frac{1}{442} a^{29} - \frac{3}{13} a^{23} - \frac{95}{442} a^{20} + \frac{2}{13} a^{17} - \frac{1}{13} a^{14} + \frac{50}{221} a^{11} - \frac{1}{13} a^{8} - \frac{4}{13} a^{5} - \frac{81}{442} a^{2}$, $\frac{1}{7360037698} a^{30} - \frac{1683834}{3680018849} a^{27} + \frac{6441575}{432943394} a^{24} - \frac{716190659}{3680018849} a^{21} + \frac{518929651}{3680018849} a^{18} + \frac{13028009}{33303338} a^{15} - \frac{1803481330}{3680018849} a^{12} - \frac{1661750423}{3680018849} a^{9} - \frac{35361279}{432943394} a^{6} - \frac{2282011469}{7360037698} a^{3} + \frac{241393413}{7360037698}$, $\frac{1}{7360037698} a^{31} - \frac{1683834}{3680018849} a^{28} + \frac{6441575}{432943394} a^{25} - \frac{716190659}{3680018849} a^{22} + \frac{518929651}{3680018849} a^{19} + \frac{13028009}{33303338} a^{16} - \frac{1803481330}{3680018849} a^{13} - \frac{1661750423}{3680018849} a^{10} - \frac{35361279}{432943394} a^{7} - \frac{2282011469}{7360037698} a^{4} + \frac{241393413}{7360037698} a$, $\frac{1}{7360037698} a^{32} - \frac{1683834}{3680018849} a^{29} + \frac{6441575}{432943394} a^{26} - \frac{716190659}{3680018849} a^{23} + \frac{518929651}{3680018849} a^{20} + \frac{13028009}{33303338} a^{17} - \frac{1803481330}{3680018849} a^{14} - \frac{1661750423}{3680018849} a^{11} - \frac{35361279}{432943394} a^{8} - \frac{2282011469}{7360037698} a^{5} + \frac{241393413}{7360037698} a^{2}$, $\frac{1}{12287620038761035618} a^{33} - \frac{833324575}{12287620038761035618} a^{30} + \frac{1527523822460443}{12287620038761035618} a^{27} - \frac{51059455414921331}{12287620038761035618} a^{24} - \frac{687369206163464139}{12287620038761035618} a^{21} - \frac{76435553572800713}{6143810019380517809} a^{18} + \frac{1957032277557465139}{6143810019380517809} a^{15} + \frac{4429080406490146237}{12287620038761035618} a^{12} - \frac{1373115964025814875}{6143810019380517809} a^{9} - \frac{1707008940498723556}{6143810019380517809} a^{6} - \frac{697979026570989760}{6143810019380517809} a^{3} + \frac{177893123681331448}{472600770721578293}$, $\frac{1}{12287620038761035618} a^{34} - \frac{833324575}{12287620038761035618} a^{31} + \frac{1527523822460443}{12287620038761035618} a^{28} - \frac{51059455414921331}{12287620038761035618} a^{25} - \frac{687369206163464139}{12287620038761035618} a^{22} - \frac{76435553572800713}{6143810019380517809} a^{19} + \frac{1957032277557465139}{6143810019380517809} a^{16} + \frac{4429080406490146237}{12287620038761035618} a^{13} - \frac{1373115964025814875}{6143810019380517809} a^{10} - \frac{1707008940498723556}{6143810019380517809} a^{7} - \frac{697979026570989760}{6143810019380517809} a^{4} + \frac{177893123681331448}{472600770721578293} a$, $\frac{1}{12287620038761035618} a^{35} - \frac{833324575}{12287620038761035618} a^{32} + \frac{1527523822460443}{12287620038761035618} a^{29} - \frac{51059455414921331}{12287620038761035618} a^{26} - \frac{687369206163464139}{12287620038761035618} a^{23} - \frac{76435553572800713}{6143810019380517809} a^{20} + \frac{1957032277557465139}{6143810019380517809} a^{17} + \frac{4429080406490146237}{12287620038761035618} a^{14} - \frac{1373115964025814875}{6143810019380517809} a^{11} - \frac{1707008940498723556}{6143810019380517809} a^{8} - \frac{697979026570989760}{6143810019380517809} a^{5} + \frac{177893123681331448}{472600770721578293} a^{2}$
Class group and class number
$C_{2}\times C_{74}$, which has order $148$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{54750183643159558}{6143810019380517809} a^{34} + \frac{863351337584628236}{6143810019380517809} a^{31} - \frac{51059596888771568813}{12287620038761035618} a^{28} - \frac{204366554761057937494}{6143810019380517809} a^{25} - \frac{2454854100752371198598}{6143810019380517809} a^{22} - \frac{4125402857242667211415}{12287620038761035618} a^{19} - \frac{3101986311157413131518}{6143810019380517809} a^{16} + \frac{1463441623126818098554}{6143810019380517809} a^{13} - \frac{1285209272019518159592}{6143810019380517809} a^{10} + \frac{57740314069469615414}{6143810019380517809} a^{7} + \frac{1187719518152058308}{6143810019380517809} a^{4} - \frac{44600832139091345309}{12287620038761035618} a \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13624539961495.691 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 7 | Data not computed | ||||||