Normalized defining polynomial
\( x^{36} - x^{35} + 5 x^{34} - 9 x^{33} + 29 x^{32} - 65 x^{31} + 181 x^{30} - 441 x^{29} + 1165 x^{28} - 2929 x^{27} + 7589 x^{26} - 19305 x^{25} + 49661 x^{24} - 126881 x^{23} + 325525 x^{22} - 833049 x^{21} + 2135149 x^{20} - 5467345 x^{19} + 14007941 x^{18} + 21869380 x^{17} + 34162384 x^{16} + 53315136 x^{15} + 83334400 x^{14} + 129926144 x^{13} + 203411456 x^{12} + 316293120 x^{11} + 497352704 x^{10} + 767819776 x^{9} + 1221591040 x^{8} + 1849688064 x^{7} + 3036676096 x^{6} + 4362076160 x^{5} + 7784628224 x^{4} + 9663676416 x^{3} + 21474836480 x^{2} + 17179869184 x + 68719476736 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{56031764} a^{19} - \frac{1}{4} a^{18} + \frac{1}{4} a^{17} - \frac{1}{4} a^{16} + \frac{1}{4} a^{15} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{5467345}{14007941}$, $\frac{1}{224127056} a^{20} - \frac{1}{224127056} a^{19} + \frac{1}{16} a^{18} - \frac{5}{16} a^{17} - \frac{7}{16} a^{16} + \frac{3}{16} a^{15} + \frac{1}{16} a^{14} - \frac{5}{16} a^{13} - \frac{7}{16} a^{12} + \frac{3}{16} a^{11} + \frac{1}{16} a^{10} - \frac{5}{16} a^{9} - \frac{7}{16} a^{8} + \frac{3}{16} a^{7} + \frac{1}{16} a^{6} - \frac{5}{16} a^{5} - \frac{7}{16} a^{4} + \frac{3}{16} a^{3} + \frac{1}{16} a^{2} + \frac{5467345}{56031764} a + \frac{2135149}{14007941}$, $\frac{1}{896508224} a^{21} - \frac{1}{896508224} a^{20} + \frac{5}{896508224} a^{19} + \frac{11}{64} a^{18} - \frac{7}{64} a^{17} - \frac{13}{64} a^{16} - \frac{15}{64} a^{15} + \frac{27}{64} a^{14} - \frac{23}{64} a^{13} + \frac{3}{64} a^{12} - \frac{31}{64} a^{11} - \frac{21}{64} a^{10} + \frac{25}{64} a^{9} + \frac{19}{64} a^{8} + \frac{17}{64} a^{7} - \frac{5}{64} a^{6} + \frac{9}{64} a^{5} - \frac{29}{64} a^{4} + \frac{1}{64} a^{3} + \frac{5467345}{224127056} a^{2} + \frac{2135149}{56031764} a + \frac{833049}{14007941}$, $\frac{1}{3586032896} a^{22} - \frac{1}{3586032896} a^{21} + \frac{5}{3586032896} a^{20} - \frac{9}{3586032896} a^{19} - \frac{71}{256} a^{18} + \frac{115}{256} a^{17} + \frac{113}{256} a^{16} + \frac{91}{256} a^{15} + \frac{105}{256} a^{14} + \frac{3}{256} a^{13} - \frac{95}{256} a^{12} + \frac{107}{256} a^{11} + \frac{25}{256} a^{10} - \frac{109}{256} a^{9} - \frac{47}{256} a^{8} + \frac{123}{256} a^{7} - \frac{55}{256} a^{6} + \frac{35}{256} a^{5} + \frac{1}{256} a^{4} + \frac{5467345}{896508224} a^{3} + \frac{2135149}{224127056} a^{2} + \frac{833049}{56031764} a + \frac{325525}{14007941}$, $\frac{1}{14344131584} a^{23} - \frac{1}{14344131584} a^{22} + \frac{5}{14344131584} a^{21} - \frac{9}{14344131584} a^{20} + \frac{29}{14344131584} a^{19} - \frac{397}{1024} a^{18} + \frac{113}{1024} a^{17} + \frac{347}{1024} a^{16} + \frac{105}{1024} a^{15} + \frac{259}{1024} a^{14} + \frac{161}{1024} a^{13} - \frac{149}{1024} a^{12} - \frac{231}{1024} a^{11} - \frac{365}{1024} a^{10} + \frac{465}{1024} a^{9} + \frac{123}{1024} a^{8} - \frac{311}{1024} a^{7} - \frac{221}{1024} a^{6} + \frac{1}{1024} a^{5} + \frac{5467345}{3586032896} a^{4} + \frac{2135149}{896508224} a^{3} + \frac{833049}{224127056} a^{2} + \frac{325525}{56031764} a + \frac{126881}{14007941}$, $\frac{1}{57376526336} a^{24} - \frac{1}{57376526336} a^{23} + \frac{5}{57376526336} a^{22} - \frac{9}{57376526336} a^{21} + \frac{29}{57376526336} a^{20} - \frac{65}{57376526336} a^{19} - \frac{1935}{4096} a^{18} + \frac{347}{4096} a^{17} + \frac{105}{4096} a^{16} + \frac{1283}{4096} a^{15} - \frac{863}{4096} a^{14} + \frac{1899}{4096} a^{13} - \frac{1255}{4096} a^{12} + \frac{659}{4096} a^{11} - \frac{1583}{4096} a^{10} + \frac{123}{4096} a^{9} + \frac{1737}{4096} a^{8} - \frac{1245}{4096} a^{7} + \frac{1}{4096} a^{6} + \frac{5467345}{14344131584} a^{5} + \frac{2135149}{3586032896} a^{4} + \frac{833049}{896508224} a^{3} + \frac{325525}{224127056} a^{2} + \frac{126881}{56031764} a + \frac{49661}{14007941}$, $\frac{1}{229506105344} a^{25} - \frac{1}{229506105344} a^{24} + \frac{5}{229506105344} a^{23} - \frac{9}{229506105344} a^{22} + \frac{29}{229506105344} a^{21} - \frac{65}{229506105344} a^{20} + \frac{181}{229506105344} a^{19} + \frac{347}{16384} a^{18} - \frac{8087}{16384} a^{17} - \frac{6909}{16384} a^{16} + \frac{7329}{16384} a^{15} - \frac{2197}{16384} a^{14} - \frac{1255}{16384} a^{13} - \frac{7533}{16384} a^{12} + \frac{2513}{16384} a^{11} + \frac{123}{16384} a^{10} - \frac{6455}{16384} a^{9} + \frac{6947}{16384} a^{8} + \frac{1}{16384} a^{7} + \frac{5467345}{57376526336} a^{6} + \frac{2135149}{14344131584} a^{5} + \frac{833049}{3586032896} a^{4} + \frac{325525}{896508224} a^{3} + \frac{126881}{224127056} a^{2} + \frac{49661}{56031764} a + \frac{19305}{14007941}$, $\frac{1}{918024421376} a^{26} - \frac{1}{918024421376} a^{25} + \frac{5}{918024421376} a^{24} - \frac{9}{918024421376} a^{23} + \frac{29}{918024421376} a^{22} - \frac{65}{918024421376} a^{21} + \frac{181}{918024421376} a^{20} - \frac{441}{918024421376} a^{19} + \frac{24681}{65536} a^{18} - \frac{23293}{65536} a^{17} - \frac{9055}{65536} a^{16} - \frac{18581}{65536} a^{15} - \frac{17639}{65536} a^{14} + \frac{8851}{65536} a^{13} - \frac{13871}{65536} a^{12} - \frac{16261}{65536} a^{11} + \frac{26313}{65536} a^{10} - \frac{25821}{65536} a^{9} + \frac{1}{65536} a^{8} + \frac{5467345}{229506105344} a^{7} + \frac{2135149}{57376526336} a^{6} + \frac{833049}{14344131584} a^{5} + \frac{325525}{3586032896} a^{4} + \frac{126881}{896508224} a^{3} + \frac{49661}{224127056} a^{2} + \frac{19305}{56031764} a + \frac{7589}{14007941}$, $\frac{1}{3672097685504} a^{27} - \frac{1}{3672097685504} a^{26} + \frac{5}{3672097685504} a^{25} - \frac{9}{3672097685504} a^{24} + \frac{29}{3672097685504} a^{23} - \frac{65}{3672097685504} a^{22} + \frac{181}{3672097685504} a^{21} - \frac{441}{3672097685504} a^{20} + \frac{1165}{3672097685504} a^{19} - \frac{23293}{262144} a^{18} + \frac{122017}{262144} a^{17} + \frac{46955}{262144} a^{16} - \frac{83175}{262144} a^{15} + \frac{8851}{262144} a^{14} - \frac{79407}{262144} a^{13} + \frac{114811}{262144} a^{12} + \frac{91849}{262144} a^{11} + \frac{105251}{262144} a^{10} + \frac{1}{262144} a^{9} + \frac{5467345}{918024421376} a^{8} + \frac{2135149}{229506105344} a^{7} + \frac{833049}{57376526336} a^{6} + \frac{325525}{14344131584} a^{5} + \frac{126881}{3586032896} a^{4} + \frac{49661}{896508224} a^{3} + \frac{19305}{224127056} a^{2} + \frac{7589}{56031764} a + \frac{2929}{14007941}$, $\frac{1}{14688390742016} a^{28} - \frac{1}{14688390742016} a^{27} + \frac{5}{14688390742016} a^{26} - \frac{9}{14688390742016} a^{25} + \frac{29}{14688390742016} a^{24} - \frac{65}{14688390742016} a^{23} + \frac{181}{14688390742016} a^{22} - \frac{441}{14688390742016} a^{21} + \frac{1165}{14688390742016} a^{20} - \frac{2929}{14688390742016} a^{19} + \frac{384161}{1048576} a^{18} - \frac{477333}{1048576} a^{17} - \frac{83175}{1048576} a^{16} + \frac{270995}{1048576} a^{15} + \frac{444881}{1048576} a^{14} - \frac{409477}{1048576} a^{13} + \frac{91849}{1048576} a^{12} + \frac{367395}{1048576} a^{11} + \frac{1}{1048576} a^{10} + \frac{5467345}{3672097685504} a^{9} + \frac{2135149}{918024421376} a^{8} + \frac{833049}{229506105344} a^{7} + \frac{325525}{57376526336} a^{6} + \frac{126881}{14344131584} a^{5} + \frac{49661}{3586032896} a^{4} + \frac{19305}{896508224} a^{3} + \frac{7589}{224127056} a^{2} + \frac{2929}{56031764} a + \frac{1165}{14007941}$, $\frac{1}{58753562968064} a^{29} - \frac{1}{58753562968064} a^{28} + \frac{5}{58753562968064} a^{27} - \frac{9}{58753562968064} a^{26} + \frac{29}{58753562968064} a^{25} - \frac{65}{58753562968064} a^{24} + \frac{181}{58753562968064} a^{23} - \frac{441}{58753562968064} a^{22} + \frac{1165}{58753562968064} a^{21} - \frac{2929}{58753562968064} a^{20} + \frac{7589}{58753562968064} a^{19} + \frac{1619819}{4194304} a^{18} - \frac{83175}{4194304} a^{17} - \frac{1826157}{4194304} a^{16} + \frac{1493457}{4194304} a^{15} - \frac{409477}{4194304} a^{14} - \frac{2005303}{4194304} a^{13} + \frac{367395}{4194304} a^{12} + \frac{1}{4194304} a^{11} + \frac{5467345}{14688390742016} a^{10} + \frac{2135149}{3672097685504} a^{9} + \frac{833049}{918024421376} a^{8} + \frac{325525}{229506105344} a^{7} + \frac{126881}{57376526336} a^{6} + \frac{49661}{14344131584} a^{5} + \frac{19305}{3586032896} a^{4} + \frac{7589}{896508224} a^{3} + \frac{2929}{224127056} a^{2} + \frac{1165}{56031764} a + \frac{441}{14007941}$, $\frac{1}{235014251872256} a^{30} - \frac{1}{235014251872256} a^{29} + \frac{5}{235014251872256} a^{28} - \frac{9}{235014251872256} a^{27} + \frac{29}{235014251872256} a^{26} - \frac{65}{235014251872256} a^{25} + \frac{181}{235014251872256} a^{24} - \frac{441}{235014251872256} a^{23} + \frac{1165}{235014251872256} a^{22} - \frac{2929}{235014251872256} a^{21} + \frac{7589}{235014251872256} a^{20} - \frac{19305}{235014251872256} a^{19} - \frac{83175}{16777216} a^{18} + \frac{6562451}{16777216} a^{17} - \frac{6895151}{16777216} a^{16} - \frac{409477}{16777216} a^{15} + \frac{6383305}{16777216} a^{14} - \frac{8021213}{16777216} a^{13} + \frac{1}{16777216} a^{12} + \frac{5467345}{58753562968064} a^{11} + \frac{2135149}{14688390742016} a^{10} + \frac{833049}{3672097685504} a^{9} + \frac{325525}{918024421376} a^{8} + \frac{126881}{229506105344} a^{7} + \frac{49661}{57376526336} a^{6} + \frac{19305}{14344131584} a^{5} + \frac{7589}{3586032896} a^{4} + \frac{2929}{896508224} a^{3} + \frac{1165}{224127056} a^{2} + \frac{441}{56031764} a + \frac{181}{14007941}$, $\frac{1}{940057007489024} a^{31} - \frac{1}{940057007489024} a^{30} + \frac{5}{940057007489024} a^{29} - \frac{9}{940057007489024} a^{28} + \frac{29}{940057007489024} a^{27} - \frac{65}{940057007489024} a^{26} + \frac{181}{940057007489024} a^{25} - \frac{441}{940057007489024} a^{24} + \frac{1165}{940057007489024} a^{23} - \frac{2929}{940057007489024} a^{22} + \frac{7589}{940057007489024} a^{21} - \frac{19305}{940057007489024} a^{20} + \frac{49661}{940057007489024} a^{19} - \frac{26991981}{67108864} a^{18} + \frac{26659281}{67108864} a^{17} - \frac{409477}{67108864} a^{16} - \frac{27171127}{67108864} a^{15} + \frac{25533219}{67108864} a^{14} + \frac{1}{67108864} a^{13} + \frac{5467345}{235014251872256} a^{12} + \frac{2135149}{58753562968064} a^{11} + \frac{833049}{14688390742016} a^{10} + \frac{325525}{3672097685504} a^{9} + \frac{126881}{918024421376} a^{8} + \frac{49661}{229506105344} a^{7} + \frac{19305}{57376526336} a^{6} + \frac{7589}{14344131584} a^{5} + \frac{2929}{3586032896} a^{4} + \frac{1165}{896508224} a^{3} + \frac{441}{224127056} a^{2} + \frac{181}{56031764} a + \frac{65}{14007941}$, $\frac{1}{3760228029956096} a^{32} - \frac{1}{3760228029956096} a^{31} + \frac{5}{3760228029956096} a^{30} - \frac{9}{3760228029956096} a^{29} + \frac{29}{3760228029956096} a^{28} - \frac{65}{3760228029956096} a^{27} + \frac{181}{3760228029956096} a^{26} - \frac{441}{3760228029956096} a^{25} + \frac{1165}{3760228029956096} a^{24} - \frac{2929}{3760228029956096} a^{23} + \frac{7589}{3760228029956096} a^{22} - \frac{19305}{3760228029956096} a^{21} + \frac{49661}{3760228029956096} a^{20} - \frac{126881}{3760228029956096} a^{19} - \frac{107558447}{268435456} a^{18} - \frac{409477}{268435456} a^{17} + \frac{107046601}{268435456} a^{16} - \frac{108684509}{268435456} a^{15} + \frac{1}{268435456} a^{14} + \frac{5467345}{940057007489024} a^{13} + \frac{2135149}{235014251872256} a^{12} + \frac{833049}{58753562968064} a^{11} + \frac{325525}{14688390742016} a^{10} + \frac{126881}{3672097685504} a^{9} + \frac{49661}{918024421376} a^{8} + \frac{19305}{229506105344} a^{7} + \frac{7589}{57376526336} a^{6} + \frac{2929}{14344131584} a^{5} + \frac{1165}{3586032896} a^{4} + \frac{441}{896508224} a^{3} + \frac{181}{224127056} a^{2} + \frac{65}{56031764} a + \frac{29}{14007941}$, $\frac{1}{15040912119824384} a^{33} - \frac{1}{15040912119824384} a^{32} + \frac{5}{15040912119824384} a^{31} - \frac{9}{15040912119824384} a^{30} + \frac{29}{15040912119824384} a^{29} - \frac{65}{15040912119824384} a^{28} + \frac{181}{15040912119824384} a^{27} - \frac{441}{15040912119824384} a^{26} + \frac{1165}{15040912119824384} a^{25} - \frac{2929}{15040912119824384} a^{24} + \frac{7589}{15040912119824384} a^{23} - \frac{19305}{15040912119824384} a^{22} + \frac{49661}{15040912119824384} a^{21} - \frac{126881}{15040912119824384} a^{20} + \frac{325525}{15040912119824384} a^{19} - \frac{409477}{1073741824} a^{18} - \frac{429824311}{1073741824} a^{17} + \frac{428186403}{1073741824} a^{16} + \frac{1}{1073741824} a^{15} + \frac{5467345}{3760228029956096} a^{14} + \frac{2135149}{940057007489024} a^{13} + \frac{833049}{235014251872256} a^{12} + \frac{325525}{58753562968064} a^{11} + \frac{126881}{14688390742016} a^{10} + \frac{49661}{3672097685504} a^{9} + \frac{19305}{918024421376} a^{8} + \frac{7589}{229506105344} a^{7} + \frac{2929}{57376526336} a^{6} + \frac{1165}{14344131584} a^{5} + \frac{441}{3586032896} a^{4} + \frac{181}{896508224} a^{3} + \frac{65}{224127056} a^{2} + \frac{29}{56031764} a + \frac{9}{14007941}$, $\frac{1}{60163648479297536} a^{34} - \frac{1}{60163648479297536} a^{33} + \frac{5}{60163648479297536} a^{32} - \frac{9}{60163648479297536} a^{31} + \frac{29}{60163648479297536} a^{30} - \frac{65}{60163648479297536} a^{29} + \frac{181}{60163648479297536} a^{28} - \frac{441}{60163648479297536} a^{27} + \frac{1165}{60163648479297536} a^{26} - \frac{2929}{60163648479297536} a^{25} + \frac{7589}{60163648479297536} a^{24} - \frac{19305}{60163648479297536} a^{23} + \frac{49661}{60163648479297536} a^{22} - \frac{126881}{60163648479297536} a^{21} + \frac{325525}{60163648479297536} a^{20} - \frac{833049}{60163648479297536} a^{19} + \frac{1717659337}{4294967296} a^{18} - \frac{1719297245}{4294967296} a^{17} + \frac{1}{4294967296} a^{16} + \frac{5467345}{15040912119824384} a^{15} + \frac{2135149}{3760228029956096} a^{14} + \frac{833049}{940057007489024} a^{13} + \frac{325525}{235014251872256} a^{12} + \frac{126881}{58753562968064} a^{11} + \frac{49661}{14688390742016} a^{10} + \frac{19305}{3672097685504} a^{9} + \frac{7589}{918024421376} a^{8} + \frac{2929}{229506105344} a^{7} + \frac{1165}{57376526336} a^{6} + \frac{441}{14344131584} a^{5} + \frac{181}{3586032896} a^{4} + \frac{65}{896508224} a^{3} + \frac{29}{224127056} a^{2} + \frac{9}{56031764} a + \frac{5}{14007941}$, $\frac{1}{240654593917190144} a^{35} - \frac{1}{240654593917190144} a^{34} + \frac{5}{240654593917190144} a^{33} - \frac{9}{240654593917190144} a^{32} + \frac{29}{240654593917190144} a^{31} - \frac{65}{240654593917190144} a^{30} + \frac{181}{240654593917190144} a^{29} - \frac{441}{240654593917190144} a^{28} + \frac{1165}{240654593917190144} a^{27} - \frac{2929}{240654593917190144} a^{26} + \frac{7589}{240654593917190144} a^{25} - \frac{19305}{240654593917190144} a^{24} + \frac{49661}{240654593917190144} a^{23} - \frac{126881}{240654593917190144} a^{22} + \frac{325525}{240654593917190144} a^{21} - \frac{833049}{240654593917190144} a^{20} + \frac{2135149}{240654593917190144} a^{19} + \frac{6870637347}{17179869184} a^{18} + \frac{1}{17179869184} a^{17} + \frac{5467345}{60163648479297536} a^{16} + \frac{2135149}{15040912119824384} a^{15} + \frac{833049}{3760228029956096} a^{14} + \frac{325525}{940057007489024} a^{13} + \frac{126881}{235014251872256} a^{12} + \frac{49661}{58753562968064} a^{11} + \frac{19305}{14688390742016} a^{10} + \frac{7589}{3672097685504} a^{9} + \frac{2929}{918024421376} a^{8} + \frac{1165}{229506105344} a^{7} + \frac{441}{57376526336} a^{6} + \frac{181}{14344131584} a^{5} + \frac{65}{3586032896} a^{4} + \frac{29}{896508224} a^{3} + \frac{9}{224127056} a^{2} + \frac{5}{56031764} a + \frac{1}{14007941}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1165}{3672097685504} a^{28} - \frac{66507086889}{3672097685504} a^{9} \) (order $38$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $18^{2}$ | R | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | $18^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 19 | Data not computed | ||||||