Normalized defining polynomial
\( x^{36} + 54 x^{32} + 1143 x^{28} + 12006 x^{24} + 65367 x^{20} + 175878 x^{16} + 201654 x^{12} + 77760 x^{8} + 3321 x^{4} + 9 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18}$, $\frac{1}{3} a^{19}$, $\frac{1}{3} a^{20}$, $\frac{1}{3} a^{21}$, $\frac{1}{3} a^{22}$, $\frac{1}{3} a^{23}$, $\frac{1}{3} a^{24}$, $\frac{1}{3} a^{25}$, $\frac{1}{3} a^{26}$, $\frac{1}{3} a^{27}$, $\frac{1}{159} a^{28} + \frac{4}{53} a^{24} + \frac{2}{159} a^{20} - \frac{5}{53} a^{16} + \frac{21}{53} a^{12} - \frac{21}{53} a^{8} - \frac{26}{53} a^{4} + \frac{3}{53}$, $\frac{1}{159} a^{29} + \frac{4}{53} a^{25} + \frac{2}{159} a^{21} - \frac{5}{53} a^{17} + \frac{21}{53} a^{13} - \frac{21}{53} a^{9} - \frac{26}{53} a^{5} + \frac{3}{53} a$, $\frac{1}{159} a^{30} + \frac{4}{53} a^{26} + \frac{2}{159} a^{22} - \frac{5}{53} a^{18} + \frac{21}{53} a^{14} - \frac{21}{53} a^{10} - \frac{26}{53} a^{6} + \frac{3}{53} a^{2}$, $\frac{1}{159} a^{31} + \frac{4}{53} a^{27} + \frac{2}{159} a^{23} - \frac{5}{53} a^{19} + \frac{21}{53} a^{15} - \frac{21}{53} a^{11} - \frac{26}{53} a^{7} + \frac{3}{53} a^{3}$, $\frac{1}{7455571593376911} a^{32} + \frac{5630098654753}{7455571593376911} a^{28} + \frac{999833583149245}{7455571593376911} a^{24} - \frac{1008403650047437}{7455571593376911} a^{20} + \frac{1190232062959063}{2485190531125637} a^{16} - \frac{224175910915125}{2485190531125637} a^{12} + \frac{345618252810921}{2485190531125637} a^{8} - \frac{293657383928164}{2485190531125637} a^{4} + \frac{276490368671045}{2485190531125637}$, $\frac{1}{7455571593376911} a^{33} + \frac{5630098654753}{7455571593376911} a^{29} + \frac{999833583149245}{7455571593376911} a^{25} - \frac{1008403650047437}{7455571593376911} a^{21} + \frac{1190232062959063}{2485190531125637} a^{17} - \frac{224175910915125}{2485190531125637} a^{13} + \frac{345618252810921}{2485190531125637} a^{9} - \frac{293657383928164}{2485190531125637} a^{5} + \frac{276490368671045}{2485190531125637} a$, $\frac{1}{7455571593376911} a^{34} + \frac{5630098654753}{7455571593376911} a^{30} + \frac{999833583149245}{7455571593376911} a^{26} - \frac{1008403650047437}{7455571593376911} a^{22} + \frac{1085505657751552}{7455571593376911} a^{18} - \frac{224175910915125}{2485190531125637} a^{14} + \frac{345618252810921}{2485190531125637} a^{10} - \frac{293657383928164}{2485190531125637} a^{6} + \frac{276490368671045}{2485190531125637} a^{2}$, $\frac{1}{7455571593376911} a^{35} + \frac{5630098654753}{7455571593376911} a^{31} + \frac{999833583149245}{7455571593376911} a^{27} - \frac{1008403650047437}{7455571593376911} a^{23} + \frac{1085505657751552}{7455571593376911} a^{19} - \frac{224175910915125}{2485190531125637} a^{15} + \frac{345618252810921}{2485190531125637} a^{11} - \frac{293657383928164}{2485190531125637} a^{7} + \frac{276490368671045}{2485190531125637} a^{3}$
Class group and class number
$C_{10298}$, which has order $10298$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{11603575446050}{2485190531125637} a^{34} + \frac{1880042080186672}{7455571593376911} a^{30} + \frac{13267626299918010}{2485190531125637} a^{26} + \frac{139413118073095656}{2485190531125637} a^{22} + \frac{2278657102484531969}{7455571593376911} a^{18} + \frac{2046643213130018505}{2485190531125637} a^{14} + \frac{2355901502579224203}{2485190531125637} a^{10} + \frac{921736426969263426}{2485190531125637} a^{6} + \frac{48757664993510943}{2485190531125637} a^{2} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77725882445830.34 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $18^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ | $18^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{36}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||