Normalized defining polynomial
\( x^{36} + 49 x^{32} + 932 x^{28} + 8695 x^{24} + 41461 x^{20} + 96055 x^{16} + 93536 x^{12} + 28314 x^{8} + 1365 x^{4} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{37} a^{28} + \frac{16}{37} a^{24} + \frac{11}{37} a^{16} - \frac{9}{37} a^{12} + \frac{10}{37} a^{4} + \frac{12}{37}$, $\frac{1}{37} a^{29} + \frac{16}{37} a^{25} + \frac{11}{37} a^{17} - \frac{9}{37} a^{13} + \frac{10}{37} a^{5} + \frac{12}{37} a$, $\frac{1}{37} a^{30} + \frac{16}{37} a^{26} + \frac{11}{37} a^{18} - \frac{9}{37} a^{14} + \frac{10}{37} a^{6} + \frac{12}{37} a^{2}$, $\frac{1}{37} a^{31} + \frac{16}{37} a^{27} + \frac{11}{37} a^{19} - \frac{9}{37} a^{15} + \frac{10}{37} a^{7} + \frac{12}{37} a^{3}$, $\frac{1}{27985118605791989} a^{32} - \frac{11925490864898}{27985118605791989} a^{28} + \frac{6493925443472047}{27985118605791989} a^{24} - \frac{5571468246550776}{27985118605791989} a^{20} + \frac{11480800345475487}{27985118605791989} a^{16} - \frac{8547611653942815}{27985118605791989} a^{12} + \frac{10111138899704072}{27985118605791989} a^{8} - \frac{5050809295317656}{27985118605791989} a^{4} + \frac{1260169341003405}{27985118605791989}$, $\frac{1}{27985118605791989} a^{33} - \frac{11925490864898}{27985118605791989} a^{29} + \frac{6493925443472047}{27985118605791989} a^{25} - \frac{5571468246550776}{27985118605791989} a^{21} + \frac{11480800345475487}{27985118605791989} a^{17} - \frac{8547611653942815}{27985118605791989} a^{13} + \frac{10111138899704072}{27985118605791989} a^{9} - \frac{5050809295317656}{27985118605791989} a^{5} + \frac{1260169341003405}{27985118605791989} a$, $\frac{1}{27985118605791989} a^{34} - \frac{11925490864898}{27985118605791989} a^{30} + \frac{6493925443472047}{27985118605791989} a^{26} - \frac{5571468246550776}{27985118605791989} a^{22} + \frac{11480800345475487}{27985118605791989} a^{18} - \frac{8547611653942815}{27985118605791989} a^{14} + \frac{10111138899704072}{27985118605791989} a^{10} - \frac{5050809295317656}{27985118605791989} a^{6} + \frac{1260169341003405}{27985118605791989} a^{2}$, $\frac{1}{27985118605791989} a^{35} - \frac{11925490864898}{27985118605791989} a^{31} + \frac{6493925443472047}{27985118605791989} a^{27} - \frac{5571468246550776}{27985118605791989} a^{23} + \frac{11480800345475487}{27985118605791989} a^{19} - \frac{8547611653942815}{27985118605791989} a^{15} + \frac{10111138899704072}{27985118605791989} a^{11} - \frac{5050809295317656}{27985118605791989} a^{7} + \frac{1260169341003405}{27985118605791989} a^{3}$
Class group and class number
$C_{19}\times C_{171}$, which has order $3249$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4933715287540570}{27985118605791989} a^{35} + \frac{241728563142432074}{27985118605791989} a^{31} + \frac{4597078388635635768}{27985118605791989} a^{27} + \frac{42877073860924213654}{27985118605791989} a^{23} + \frac{204358106636401389981}{27985118605791989} a^{19} + \frac{472982025320174328996}{27985118605791989} a^{15} + \frac{459425171055352514653}{27985118605791989} a^{11} + \frac{137874115120972430578}{27985118605791989} a^{7} + \frac{6314209051969526189}{27985118605791989} a^{3} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28122649019657.055 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $18^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 19 | Data not computed | ||||||