Normalized defining polynomial
\( x^{36} + 55 x^{34} + 1311 x^{32} + 17888 x^{30} + 155517 x^{28} + 907822 x^{26} + 3655689 x^{24} + 10287051 x^{22} + 20316834 x^{20} + 28134360 x^{18} + 27188388 x^{16} + 18181863 x^{14} + 8297859 x^{12} + 2527930 x^{10} + 496906 x^{8} + 59787 x^{6} + 4025 x^{4} + 126 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{3} a^{26} + \frac{1}{3}$, $\frac{1}{3} a^{27} + \frac{1}{3} a$, $\frac{1}{3} a^{28} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{29} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{30} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{31} + \frac{1}{3} a^{5}$, $\frac{1}{2811} a^{32} - \frac{41}{937} a^{30} + \frac{329}{2811} a^{28} - \frac{446}{2811} a^{26} + \frac{145}{937} a^{24} - \frac{29}{937} a^{22} - \frac{37}{937} a^{20} - \frac{368}{937} a^{18} - \frac{143}{937} a^{16} + \frac{202}{937} a^{14} - \frac{17}{937} a^{12} - \frac{285}{937} a^{10} + \frac{98}{937} a^{8} - \frac{851}{2811} a^{6} + \frac{74}{937} a^{4} - \frac{916}{2811} a^{2} + \frac{355}{2811}$, $\frac{1}{2811} a^{33} - \frac{41}{937} a^{31} + \frac{329}{2811} a^{29} - \frac{446}{2811} a^{27} + \frac{145}{937} a^{25} - \frac{29}{937} a^{23} - \frac{37}{937} a^{21} - \frac{368}{937} a^{19} - \frac{143}{937} a^{17} + \frac{202}{937} a^{15} - \frac{17}{937} a^{13} - \frac{285}{937} a^{11} + \frac{98}{937} a^{9} - \frac{851}{2811} a^{7} + \frac{74}{937} a^{5} - \frac{916}{2811} a^{3} + \frac{355}{2811} a$, $\frac{1}{428429008139745054445897026033} a^{34} - \frac{838555497020151424860146}{47603223126638339382877447337} a^{32} + \frac{4732383756805825547833828387}{47603223126638339382877447337} a^{30} + \frac{67674937319080603903127709449}{428429008139745054445897026033} a^{28} + \frac{48064278564862478666417346394}{428429008139745054445897026033} a^{26} + \frac{36687672702705053337608836234}{142809669379915018148632342011} a^{24} + \frac{53760334201008407196104248012}{142809669379915018148632342011} a^{22} - \frac{13091900624764751983944931325}{142809669379915018148632342011} a^{20} + \frac{41333773785159391026481865087}{142809669379915018148632342011} a^{18} - \frac{60823616248012574978045089784}{142809669379915018148632342011} a^{16} + \frac{37311437039394162442070974439}{142809669379915018148632342011} a^{14} - \frac{31664776609242030356003401622}{142809669379915018148632342011} a^{12} + \frac{22213611649593706627078975663}{47603223126638339382877447337} a^{10} - \frac{12343760860124962320423453431}{428429008139745054445897026033} a^{8} + \frac{45595351614248090227431312314}{142809669379915018148632342011} a^{6} + \frac{69098952691207623312439841777}{142809669379915018148632342011} a^{4} + \frac{81860817773901832270765295102}{428429008139745054445897026033} a^{2} - \frac{172010188419672783368880316217}{428429008139745054445897026033}$, $\frac{1}{428429008139745054445897026033} a^{35} - \frac{838555497020151424860146}{47603223126638339382877447337} a^{33} + \frac{4732383756805825547833828387}{47603223126638339382877447337} a^{31} + \frac{67674937319080603903127709449}{428429008139745054445897026033} a^{29} + \frac{48064278564862478666417346394}{428429008139745054445897026033} a^{27} + \frac{36687672702705053337608836234}{142809669379915018148632342011} a^{25} + \frac{53760334201008407196104248012}{142809669379915018148632342011} a^{23} - \frac{13091900624764751983944931325}{142809669379915018148632342011} a^{21} + \frac{41333773785159391026481865087}{142809669379915018148632342011} a^{19} - \frac{60823616248012574978045089784}{142809669379915018148632342011} a^{17} + \frac{37311437039394162442070974439}{142809669379915018148632342011} a^{15} - \frac{31664776609242030356003401622}{142809669379915018148632342011} a^{13} + \frac{22213611649593706627078975663}{47603223126638339382877447337} a^{11} - \frac{12343760860124962320423453431}{428429008139745054445897026033} a^{9} + \frac{45595351614248090227431312314}{142809669379915018148632342011} a^{7} + \frac{69098952691207623312439841777}{142809669379915018148632342011} a^{5} + \frac{81860817773901832270765295102}{428429008139745054445897026033} a^{3} - \frac{172010188419672783368880316217}{428429008139745054445897026033} a$
Class group and class number
$C_{3}\times C_{6}\times C_{6}\times C_{36}\times C_{36}$, which has order $139968$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1589620738669101764}{5791131897569746179} a^{35} - \frac{87687161295932572615}{5791131897569746179} a^{33} - \frac{2097687417390278278025}{5791131897569746179} a^{31} - \frac{9582156977711942649889}{1930377299189915393} a^{29} - \frac{83732708101292303405887}{1930377299189915393} a^{27} - \frac{491606290485781757727428}{1930377299189915393} a^{25} - \frac{1991534650963886384946798}{1930377299189915393} a^{23} - \frac{5633094669063603638015342}{1930377299189915393} a^{21} - \frac{11146762736309379646807859}{1930377299189915393} a^{19} - \frac{15341727593986249765465804}{1930377299189915393} a^{17} - \frac{14486638799037617510862556}{1930377299189915393} a^{15} - \frac{9158350776663471144796391}{1930377299189915393} a^{13} - \frac{3713707091093352310483578}{1930377299189915393} a^{11} - \frac{2669349204981514843105781}{5791131897569746179} a^{9} - \frac{308997332142749953826581}{5791131897569746179} a^{7} - \frac{3727940945647470557936}{5791131897569746179} a^{5} + \frac{621409252376036385603}{1930377299189915393} a^{3} + \frac{25167805450447728655}{1930377299189915393} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4866030378143.887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |