Normalized defining polynomial
\( x^{36} - x^{35} + 4 x^{34} - 7 x^{33} + 19 x^{32} - 40 x^{31} + 97 x^{30} - 217 x^{29} + 508 x^{28} - 1159 x^{27} + 2683 x^{26} - 6160 x^{25} + 14209 x^{24} - 32689 x^{23} + 75316 x^{22} - 173383 x^{21} + 399331 x^{20} - 919480 x^{19} + 2117473 x^{18} + 2758440 x^{17} + 3593979 x^{16} + 4681341 x^{15} + 6100596 x^{14} + 7943427 x^{13} + 10358361 x^{12} + 13471920 x^{11} + 17603163 x^{10} + 22812597 x^{9} + 29996892 x^{8} + 38440899 x^{7} + 51549777 x^{6} + 63772920 x^{5} + 90876411 x^{4} + 100442349 x^{3} + 172186884 x^{2} + 129140163 x + 387420489 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{6352419} a^{19} - \frac{1}{3} a^{18} + \frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{919480}{2117473}$, $\frac{1}{19057257} a^{20} - \frac{1}{19057257} a^{19} - \frac{2}{9} a^{18} - \frac{1}{9} a^{17} + \frac{4}{9} a^{16} + \frac{2}{9} a^{15} + \frac{1}{9} a^{14} - \frac{4}{9} a^{13} - \frac{2}{9} a^{12} - \frac{1}{9} a^{11} + \frac{4}{9} a^{10} + \frac{2}{9} a^{9} + \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} + \frac{919480}{6352419} a + \frac{399331}{2117473}$, $\frac{1}{57171771} a^{21} - \frac{1}{57171771} a^{20} + \frac{4}{57171771} a^{19} - \frac{10}{27} a^{18} + \frac{4}{27} a^{17} - \frac{7}{27} a^{16} - \frac{8}{27} a^{15} - \frac{13}{27} a^{14} - \frac{11}{27} a^{13} - \frac{1}{27} a^{12} - \frac{5}{27} a^{11} + \frac{2}{27} a^{10} + \frac{10}{27} a^{9} - \frac{4}{27} a^{8} + \frac{7}{27} a^{7} + \frac{8}{27} a^{6} + \frac{13}{27} a^{5} + \frac{11}{27} a^{4} + \frac{1}{27} a^{3} + \frac{919480}{19057257} a^{2} + \frac{399331}{6352419} a + \frac{173383}{2117473}$, $\frac{1}{171515313} a^{22} - \frac{1}{171515313} a^{21} + \frac{4}{171515313} a^{20} - \frac{7}{171515313} a^{19} - \frac{23}{81} a^{18} - \frac{7}{81} a^{17} + \frac{19}{81} a^{16} - \frac{40}{81} a^{15} + \frac{16}{81} a^{14} + \frac{26}{81} a^{13} + \frac{22}{81} a^{12} - \frac{25}{81} a^{11} + \frac{10}{81} a^{10} - \frac{4}{81} a^{9} + \frac{34}{81} a^{8} + \frac{35}{81} a^{7} - \frac{14}{81} a^{6} + \frac{38}{81} a^{5} + \frac{1}{81} a^{4} + \frac{919480}{57171771} a^{3} + \frac{399331}{19057257} a^{2} + \frac{173383}{6352419} a + \frac{75316}{2117473}$, $\frac{1}{514545939} a^{23} - \frac{1}{514545939} a^{22} + \frac{4}{514545939} a^{21} - \frac{7}{514545939} a^{20} + \frac{19}{514545939} a^{19} - \frac{7}{243} a^{18} - \frac{62}{243} a^{17} + \frac{41}{243} a^{16} + \frac{16}{243} a^{15} + \frac{107}{243} a^{14} - \frac{59}{243} a^{13} - \frac{106}{243} a^{12} - \frac{71}{243} a^{11} - \frac{4}{243} a^{10} + \frac{34}{243} a^{9} - \frac{46}{243} a^{8} - \frac{95}{243} a^{7} - \frac{43}{243} a^{6} + \frac{1}{243} a^{5} + \frac{919480}{171515313} a^{4} + \frac{399331}{57171771} a^{3} + \frac{173383}{19057257} a^{2} + \frac{75316}{6352419} a + \frac{32689}{2117473}$, $\frac{1}{1543637817} a^{24} - \frac{1}{1543637817} a^{23} + \frac{4}{1543637817} a^{22} - \frac{7}{1543637817} a^{21} + \frac{19}{1543637817} a^{20} - \frac{40}{1543637817} a^{19} - \frac{62}{729} a^{18} + \frac{41}{729} a^{17} - \frac{227}{729} a^{16} + \frac{350}{729} a^{15} - \frac{302}{729} a^{14} - \frac{106}{729} a^{13} - \frac{71}{729} a^{12} - \frac{247}{729} a^{11} + \frac{34}{729} a^{10} - \frac{46}{729} a^{9} + \frac{148}{729} a^{8} - \frac{286}{729} a^{7} + \frac{1}{729} a^{6} + \frac{919480}{514545939} a^{5} + \frac{399331}{171515313} a^{4} + \frac{173383}{57171771} a^{3} + \frac{75316}{19057257} a^{2} + \frac{32689}{6352419} a + \frac{14209}{2117473}$, $\frac{1}{4630913451} a^{25} - \frac{1}{4630913451} a^{24} + \frac{4}{4630913451} a^{23} - \frac{7}{4630913451} a^{22} + \frac{19}{4630913451} a^{21} - \frac{40}{4630913451} a^{20} + \frac{97}{4630913451} a^{19} + \frac{770}{2187} a^{18} - \frac{956}{2187} a^{17} + \frac{1079}{2187} a^{16} + \frac{427}{2187} a^{15} + \frac{623}{2187} a^{14} + \frac{658}{2187} a^{13} - \frac{976}{2187} a^{12} + \frac{763}{2187} a^{11} + \frac{683}{2187} a^{10} - \frac{581}{2187} a^{9} + \frac{443}{2187} a^{8} + \frac{1}{2187} a^{7} + \frac{919480}{1543637817} a^{6} + \frac{399331}{514545939} a^{5} + \frac{173383}{171515313} a^{4} + \frac{75316}{57171771} a^{3} + \frac{32689}{19057257} a^{2} + \frac{14209}{6352419} a + \frac{6160}{2117473}$, $\frac{1}{13892740353} a^{26} - \frac{1}{13892740353} a^{25} + \frac{4}{13892740353} a^{24} - \frac{7}{13892740353} a^{23} + \frac{19}{13892740353} a^{22} - \frac{40}{13892740353} a^{21} + \frac{97}{13892740353} a^{20} - \frac{217}{13892740353} a^{19} - \frac{956}{6561} a^{18} + \frac{3266}{6561} a^{17} + \frac{427}{6561} a^{16} + \frac{2810}{6561} a^{15} - \frac{1529}{6561} a^{14} - \frac{3163}{6561} a^{13} - \frac{1424}{6561} a^{12} - \frac{1504}{6561} a^{11} - \frac{2768}{6561} a^{10} - \frac{1744}{6561} a^{9} + \frac{1}{6561} a^{8} + \frac{919480}{4630913451} a^{7} + \frac{399331}{1543637817} a^{6} + \frac{173383}{514545939} a^{5} + \frac{75316}{171515313} a^{4} + \frac{32689}{57171771} a^{3} + \frac{14209}{19057257} a^{2} + \frac{6160}{6352419} a + \frac{2683}{2117473}$, $\frac{1}{41678221059} a^{27} - \frac{1}{41678221059} a^{26} + \frac{4}{41678221059} a^{25} - \frac{7}{41678221059} a^{24} + \frac{19}{41678221059} a^{23} - \frac{40}{41678221059} a^{22} + \frac{97}{41678221059} a^{21} - \frac{217}{41678221059} a^{20} + \frac{508}{41678221059} a^{19} - \frac{3295}{19683} a^{18} + \frac{427}{19683} a^{17} + \frac{9371}{19683} a^{16} - \frac{8090}{19683} a^{15} - \frac{3163}{19683} a^{14} - \frac{1424}{19683} a^{13} - \frac{8065}{19683} a^{12} + \frac{3793}{19683} a^{11} - \frac{8305}{19683} a^{10} + \frac{1}{19683} a^{9} + \frac{919480}{13892740353} a^{8} + \frac{399331}{4630913451} a^{7} + \frac{173383}{1543637817} a^{6} + \frac{75316}{514545939} a^{5} + \frac{32689}{171515313} a^{4} + \frac{14209}{57171771} a^{3} + \frac{6160}{19057257} a^{2} + \frac{2683}{6352419} a + \frac{1159}{2117473}$, $\frac{1}{125034663177} a^{28} - \frac{1}{125034663177} a^{27} + \frac{4}{125034663177} a^{26} - \frac{7}{125034663177} a^{25} + \frac{19}{125034663177} a^{24} - \frac{40}{125034663177} a^{23} + \frac{97}{125034663177} a^{22} - \frac{217}{125034663177} a^{21} + \frac{508}{125034663177} a^{20} - \frac{1159}{125034663177} a^{19} + \frac{427}{59049} a^{18} - \frac{10312}{59049} a^{17} + \frac{11593}{59049} a^{16} + \frac{16520}{59049} a^{15} + \frac{18259}{59049} a^{14} - \frac{27748}{59049} a^{13} + \frac{23476}{59049} a^{12} + \frac{11378}{59049} a^{11} + \frac{1}{59049} a^{10} + \frac{919480}{41678221059} a^{9} + \frac{399331}{13892740353} a^{8} + \frac{173383}{4630913451} a^{7} + \frac{75316}{1543637817} a^{6} + \frac{32689}{514545939} a^{5} + \frac{14209}{171515313} a^{4} + \frac{6160}{57171771} a^{3} + \frac{2683}{19057257} a^{2} + \frac{1159}{6352419} a + \frac{508}{2117473}$, $\frac{1}{375103989531} a^{29} - \frac{1}{375103989531} a^{28} + \frac{4}{375103989531} a^{27} - \frac{7}{375103989531} a^{26} + \frac{19}{375103989531} a^{25} - \frac{40}{375103989531} a^{24} + \frac{97}{375103989531} a^{23} - \frac{217}{375103989531} a^{22} + \frac{508}{375103989531} a^{21} - \frac{1159}{375103989531} a^{20} + \frac{2683}{375103989531} a^{19} + \frac{48737}{177147} a^{18} - \frac{47456}{177147} a^{17} + \frac{16520}{177147} a^{16} + \frac{18259}{177147} a^{15} + \frac{31301}{177147} a^{14} + \frac{23476}{177147} a^{13} + \frac{70427}{177147} a^{12} + \frac{1}{177147} a^{11} + \frac{919480}{125034663177} a^{10} + \frac{399331}{41678221059} a^{9} + \frac{173383}{13892740353} a^{8} + \frac{75316}{4630913451} a^{7} + \frac{32689}{1543637817} a^{6} + \frac{14209}{514545939} a^{5} + \frac{6160}{171515313} a^{4} + \frac{2683}{57171771} a^{3} + \frac{1159}{19057257} a^{2} + \frac{508}{6352419} a + \frac{217}{2117473}$, $\frac{1}{1125311968593} a^{30} - \frac{1}{1125311968593} a^{29} + \frac{4}{1125311968593} a^{28} - \frac{7}{1125311968593} a^{27} + \frac{19}{1125311968593} a^{26} - \frac{40}{1125311968593} a^{25} + \frac{97}{1125311968593} a^{24} - \frac{217}{1125311968593} a^{23} + \frac{508}{1125311968593} a^{22} - \frac{1159}{1125311968593} a^{21} + \frac{2683}{1125311968593} a^{20} - \frac{6160}{1125311968593} a^{19} - \frac{224603}{531441} a^{18} - \frac{160627}{531441} a^{17} + \frac{18259}{531441} a^{16} + \frac{31301}{531441} a^{15} + \frac{23476}{531441} a^{14} + \frac{70427}{531441} a^{13} + \frac{1}{531441} a^{12} + \frac{919480}{375103989531} a^{11} + \frac{399331}{125034663177} a^{10} + \frac{173383}{41678221059} a^{9} + \frac{75316}{13892740353} a^{8} + \frac{32689}{4630913451} a^{7} + \frac{14209}{1543637817} a^{6} + \frac{6160}{514545939} a^{5} + \frac{2683}{171515313} a^{4} + \frac{1159}{57171771} a^{3} + \frac{508}{19057257} a^{2} + \frac{217}{6352419} a + \frac{97}{2117473}$, $\frac{1}{3375935905779} a^{31} - \frac{1}{3375935905779} a^{30} + \frac{4}{3375935905779} a^{29} - \frac{7}{3375935905779} a^{28} + \frac{19}{3375935905779} a^{27} - \frac{40}{3375935905779} a^{26} + \frac{97}{3375935905779} a^{25} - \frac{217}{3375935905779} a^{24} + \frac{508}{3375935905779} a^{23} - \frac{1159}{3375935905779} a^{22} + \frac{2683}{3375935905779} a^{21} - \frac{6160}{3375935905779} a^{20} + \frac{14209}{3375935905779} a^{19} - \frac{160627}{1594323} a^{18} - \frac{513182}{1594323} a^{17} + \frac{31301}{1594323} a^{16} + \frac{23476}{1594323} a^{15} + \frac{70427}{1594323} a^{14} + \frac{1}{1594323} a^{13} + \frac{919480}{1125311968593} a^{12} + \frac{399331}{375103989531} a^{11} + \frac{173383}{125034663177} a^{10} + \frac{75316}{41678221059} a^{9} + \frac{32689}{13892740353} a^{8} + \frac{14209}{4630913451} a^{7} + \frac{6160}{1543637817} a^{6} + \frac{2683}{514545939} a^{5} + \frac{1159}{171515313} a^{4} + \frac{508}{57171771} a^{3} + \frac{217}{19057257} a^{2} + \frac{97}{6352419} a + \frac{40}{2117473}$, $\frac{1}{10127807717337} a^{32} - \frac{1}{10127807717337} a^{31} + \frac{4}{10127807717337} a^{30} - \frac{7}{10127807717337} a^{29} + \frac{19}{10127807717337} a^{28} - \frac{40}{10127807717337} a^{27} + \frac{97}{10127807717337} a^{26} - \frac{217}{10127807717337} a^{25} + \frac{508}{10127807717337} a^{24} - \frac{1159}{10127807717337} a^{23} + \frac{2683}{10127807717337} a^{22} - \frac{6160}{10127807717337} a^{21} + \frac{14209}{10127807717337} a^{20} - \frac{32689}{10127807717337} a^{19} + \frac{1081141}{4782969} a^{18} - \frac{1563022}{4782969} a^{17} + \frac{23476}{4782969} a^{16} + \frac{70427}{4782969} a^{15} + \frac{1}{4782969} a^{14} + \frac{919480}{3375935905779} a^{13} + \frac{399331}{1125311968593} a^{12} + \frac{173383}{375103989531} a^{11} + \frac{75316}{125034663177} a^{10} + \frac{32689}{41678221059} a^{9} + \frac{14209}{13892740353} a^{8} + \frac{6160}{4630913451} a^{7} + \frac{2683}{1543637817} a^{6} + \frac{1159}{514545939} a^{5} + \frac{508}{171515313} a^{4} + \frac{217}{57171771} a^{3} + \frac{97}{19057257} a^{2} + \frac{40}{6352419} a + \frac{19}{2117473}$, $\frac{1}{30383423152011} a^{33} - \frac{1}{30383423152011} a^{32} + \frac{4}{30383423152011} a^{31} - \frac{7}{30383423152011} a^{30} + \frac{19}{30383423152011} a^{29} - \frac{40}{30383423152011} a^{28} + \frac{97}{30383423152011} a^{27} - \frac{217}{30383423152011} a^{26} + \frac{508}{30383423152011} a^{25} - \frac{1159}{30383423152011} a^{24} + \frac{2683}{30383423152011} a^{23} - \frac{6160}{30383423152011} a^{22} + \frac{14209}{30383423152011} a^{21} - \frac{32689}{30383423152011} a^{20} + \frac{75316}{30383423152011} a^{19} - \frac{6345991}{14348907} a^{18} - \frac{4759493}{14348907} a^{17} + \frac{70427}{14348907} a^{16} + \frac{1}{14348907} a^{15} + \frac{919480}{10127807717337} a^{14} + \frac{399331}{3375935905779} a^{13} + \frac{173383}{1125311968593} a^{12} + \frac{75316}{375103989531} a^{11} + \frac{32689}{125034663177} a^{10} + \frac{14209}{41678221059} a^{9} + \frac{6160}{13892740353} a^{8} + \frac{2683}{4630913451} a^{7} + \frac{1159}{1543637817} a^{6} + \frac{508}{514545939} a^{5} + \frac{217}{171515313} a^{4} + \frac{97}{57171771} a^{3} + \frac{40}{19057257} a^{2} + \frac{19}{6352419} a + \frac{7}{2117473}$, $\frac{1}{91150269456033} a^{34} - \frac{1}{91150269456033} a^{33} + \frac{4}{91150269456033} a^{32} - \frac{7}{91150269456033} a^{31} + \frac{19}{91150269456033} a^{30} - \frac{40}{91150269456033} a^{29} + \frac{97}{91150269456033} a^{28} - \frac{217}{91150269456033} a^{27} + \frac{508}{91150269456033} a^{26} - \frac{1159}{91150269456033} a^{25} + \frac{2683}{91150269456033} a^{24} - \frac{6160}{91150269456033} a^{23} + \frac{14209}{91150269456033} a^{22} - \frac{32689}{91150269456033} a^{21} + \frac{75316}{91150269456033} a^{20} - \frac{173383}{91150269456033} a^{19} - \frac{4759493}{43046721} a^{18} - \frac{14278480}{43046721} a^{17} + \frac{1}{43046721} a^{16} + \frac{919480}{30383423152011} a^{15} + \frac{399331}{10127807717337} a^{14} + \frac{173383}{3375935905779} a^{13} + \frac{75316}{1125311968593} a^{12} + \frac{32689}{375103989531} a^{11} + \frac{14209}{125034663177} a^{10} + \frac{6160}{41678221059} a^{9} + \frac{2683}{13892740353} a^{8} + \frac{1159}{4630913451} a^{7} + \frac{508}{1543637817} a^{6} + \frac{217}{514545939} a^{5} + \frac{97}{171515313} a^{4} + \frac{40}{57171771} a^{3} + \frac{19}{19057257} a^{2} + \frac{7}{6352419} a + \frac{4}{2117473}$, $\frac{1}{273450808368099} a^{35} - \frac{1}{273450808368099} a^{34} + \frac{4}{273450808368099} a^{33} - \frac{7}{273450808368099} a^{32} + \frac{19}{273450808368099} a^{31} - \frac{40}{273450808368099} a^{30} + \frac{97}{273450808368099} a^{29} - \frac{217}{273450808368099} a^{28} + \frac{508}{273450808368099} a^{27} - \frac{1159}{273450808368099} a^{26} + \frac{2683}{273450808368099} a^{25} - \frac{6160}{273450808368099} a^{24} + \frac{14209}{273450808368099} a^{23} - \frac{32689}{273450808368099} a^{22} + \frac{75316}{273450808368099} a^{21} - \frac{173383}{273450808368099} a^{20} + \frac{399331}{273450808368099} a^{19} - \frac{14278480}{129140163} a^{18} + \frac{1}{129140163} a^{17} + \frac{919480}{91150269456033} a^{16} + \frac{399331}{30383423152011} a^{15} + \frac{173383}{10127807717337} a^{14} + \frac{75316}{3375935905779} a^{13} + \frac{32689}{1125311968593} a^{12} + \frac{14209}{375103989531} a^{11} + \frac{6160}{125034663177} a^{10} + \frac{2683}{41678221059} a^{9} + \frac{1159}{13892740353} a^{8} + \frac{508}{4630913451} a^{7} + \frac{217}{1543637817} a^{6} + \frac{97}{514545939} a^{5} + \frac{40}{171515313} a^{4} + \frac{19}{57171771} a^{3} + \frac{7}{19057257} a^{2} + \frac{4}{6352419} a + \frac{1}{2117473}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{75316}{30383423152011} a^{34} - \frac{574888488199}{30383423152011} a^{15} \) (order $38$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ | $18^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | $18^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 19 | Data not computed | ||||||