Normalized defining polynomial
\( x^{36} - 76 x^{27} + 5777 x^{18} + 76 x^{9} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{34} a^{18} + \frac{13}{34} a^{9} - \frac{1}{34}$, $\frac{1}{34} a^{19} + \frac{13}{34} a^{10} - \frac{1}{34} a$, $\frac{1}{34} a^{20} + \frac{13}{34} a^{11} - \frac{1}{34} a^{2}$, $\frac{1}{34} a^{21} + \frac{13}{34} a^{12} - \frac{1}{34} a^{3}$, $\frac{1}{34} a^{22} + \frac{13}{34} a^{13} - \frac{1}{34} a^{4}$, $\frac{1}{34} a^{23} + \frac{13}{34} a^{14} - \frac{1}{34} a^{5}$, $\frac{1}{34} a^{24} + \frac{13}{34} a^{15} - \frac{1}{34} a^{6}$, $\frac{1}{34} a^{25} + \frac{13}{34} a^{16} - \frac{1}{34} a^{7}$, $\frac{1}{34} a^{26} + \frac{13}{34} a^{17} - \frac{1}{34} a^{8}$, $\frac{1}{196418} a^{27} - \frac{75025}{196418}$, $\frac{1}{196418} a^{28} - \frac{75025}{196418} a$, $\frac{1}{196418} a^{29} - \frac{75025}{196418} a^{2}$, $\frac{1}{196418} a^{30} - \frac{75025}{196418} a^{3}$, $\frac{1}{196418} a^{31} - \frac{75025}{196418} a^{4}$, $\frac{1}{196418} a^{32} - \frac{75025}{196418} a^{5}$, $\frac{1}{196418} a^{33} - \frac{75025}{196418} a^{6}$, $\frac{1}{196418} a^{34} - \frac{75025}{196418} a^{7}$, $\frac{1}{196418} a^{35} - \frac{75025}{196418} a^{8}$
Class group and class number
$C_{37}$, which has order $37$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{21}{196418} a^{35} - \frac{9227465}{196418} a^{8} \) (order $54$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6550249244897.024 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | R | R | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{12}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||