Properties

Label 36.0.323...776.2
Degree $36$
Signature $[0, 18]$
Discriminant $3.239\times 10^{64}$
Root discriminant \(61.94\)
Ramified primes $2,3,7$
Class number not computed
Class group not computed
Galois group $C_6^2$ (as 36T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 42*x^34 - 12*x^33 + 798*x^32 + 444*x^31 - 8930*x^30 - 7224*x^29 + 64293*x^28 + 66808*x^27 - 308040*x^26 - 380412*x^25 + 1018573*x^24 + 1390296*x^23 - 2660256*x^22 - 3730568*x^21 + 6607119*x^20 + 9624456*x^19 - 7505542*x^18 - 2964660*x^17 + 28706040*x^16 + 6977356*x^15 - 34628742*x^14 + 28138392*x^13 + 70034750*x^12 - 59344320*x^11 - 97239042*x^10 + 110557824*x^9 + 103706163*x^8 - 146720820*x^7 + 54606518*x^6 - 96816432*x^5 + 280912497*x^4 - 164862264*x^3 + 36478572*x^2 - 7070100*x + 9128827)
 
gp: K = bnfinit(y^36 - 42*y^34 - 12*y^33 + 798*y^32 + 444*y^31 - 8930*y^30 - 7224*y^29 + 64293*y^28 + 66808*y^27 - 308040*y^26 - 380412*y^25 + 1018573*y^24 + 1390296*y^23 - 2660256*y^22 - 3730568*y^21 + 6607119*y^20 + 9624456*y^19 - 7505542*y^18 - 2964660*y^17 + 28706040*y^16 + 6977356*y^15 - 34628742*y^14 + 28138392*y^13 + 70034750*y^12 - 59344320*y^11 - 97239042*y^10 + 110557824*y^9 + 103706163*y^8 - 146720820*y^7 + 54606518*y^6 - 96816432*y^5 + 280912497*y^4 - 164862264*y^3 + 36478572*y^2 - 7070100*y + 9128827, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 42*x^34 - 12*x^33 + 798*x^32 + 444*x^31 - 8930*x^30 - 7224*x^29 + 64293*x^28 + 66808*x^27 - 308040*x^26 - 380412*x^25 + 1018573*x^24 + 1390296*x^23 - 2660256*x^22 - 3730568*x^21 + 6607119*x^20 + 9624456*x^19 - 7505542*x^18 - 2964660*x^17 + 28706040*x^16 + 6977356*x^15 - 34628742*x^14 + 28138392*x^13 + 70034750*x^12 - 59344320*x^11 - 97239042*x^10 + 110557824*x^9 + 103706163*x^8 - 146720820*x^7 + 54606518*x^6 - 96816432*x^5 + 280912497*x^4 - 164862264*x^3 + 36478572*x^2 - 7070100*x + 9128827);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 42*x^34 - 12*x^33 + 798*x^32 + 444*x^31 - 8930*x^30 - 7224*x^29 + 64293*x^28 + 66808*x^27 - 308040*x^26 - 380412*x^25 + 1018573*x^24 + 1390296*x^23 - 2660256*x^22 - 3730568*x^21 + 6607119*x^20 + 9624456*x^19 - 7505542*x^18 - 2964660*x^17 + 28706040*x^16 + 6977356*x^15 - 34628742*x^14 + 28138392*x^13 + 70034750*x^12 - 59344320*x^11 - 97239042*x^10 + 110557824*x^9 + 103706163*x^8 - 146720820*x^7 + 54606518*x^6 - 96816432*x^5 + 280912497*x^4 - 164862264*x^3 + 36478572*x^2 - 7070100*x + 9128827)
 

\( x^{36} - 42 x^{34} - 12 x^{33} + 798 x^{32} + 444 x^{31} - 8930 x^{30} - 7224 x^{29} + 64293 x^{28} + \cdots + 9128827 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(32387780912664470931540162651878867184371649203720968942991179776\) \(\medspace = 2^{54}\cdot 3^{48}\cdot 7^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(61.94\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{4/3}7^{5/6}\approx 61.937694144633795$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(504=2^{3}\cdot 3^{2}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{504}(1,·)$, $\chi_{504}(115,·)$, $\chi_{504}(265,·)$, $\chi_{504}(139,·)$, $\chi_{504}(145,·)$, $\chi_{504}(403,·)$, $\chi_{504}(409,·)$, $\chi_{504}(25,·)$, $\chi_{504}(283,·)$, $\chi_{504}(289,·)$, $\chi_{504}(163,·)$, $\chi_{504}(169,·)$, $\chi_{504}(43,·)$, $\chi_{504}(433,·)$, $\chi_{504}(307,·)$, $\chi_{504}(73,·)$, $\chi_{504}(313,·)$, $\chi_{504}(187,·)$, $\chi_{504}(19,·)$, $\chi_{504}(193,·)$, $\chi_{504}(67,·)$, $\chi_{504}(97,·)$, $\chi_{504}(457,·)$, $\chi_{504}(331,·)$, $\chi_{504}(337,·)$, $\chi_{504}(211,·)$, $\chi_{504}(475,·)$, $\chi_{504}(481,·)$, $\chi_{504}(355,·)$, $\chi_{504}(361,·)$, $\chi_{504}(235,·)$, $\chi_{504}(451,·)$, $\chi_{504}(241,·)$, $\chi_{504}(499,·)$, $\chi_{504}(121,·)$, $\chi_{504}(379,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{4}a$, $\frac{1}{4}a^{14}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{4}a^{15}-\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{4}a^{16}-\frac{1}{4}a^{8}-\frac{1}{4}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{17}-\frac{1}{4}a^{9}-\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{18}-\frac{1}{8}a^{14}-\frac{1}{8}a^{12}-\frac{1}{8}a^{10}-\frac{1}{4}a^{8}+\frac{3}{8}a^{4}+\frac{3}{8}a^{2}+\frac{1}{8}$, $\frac{1}{8}a^{19}-\frac{1}{8}a^{15}-\frac{1}{8}a^{13}-\frac{1}{8}a^{11}-\frac{1}{4}a^{9}+\frac{3}{8}a^{5}+\frac{3}{8}a^{3}+\frac{1}{8}a$, $\frac{1}{8}a^{20}-\frac{1}{8}a^{16}-\frac{1}{8}a^{14}-\frac{1}{8}a^{12}-\frac{1}{4}a^{10}-\frac{1}{8}a^{6}+\frac{3}{8}a^{4}-\frac{3}{8}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{21}-\frac{1}{8}a^{17}-\frac{1}{8}a^{15}-\frac{1}{8}a^{13}-\frac{1}{4}a^{11}-\frac{1}{8}a^{7}+\frac{3}{8}a^{5}-\frac{3}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{22}-\frac{1}{8}a^{16}-\frac{1}{8}a^{12}-\frac{1}{8}a^{10}+\frac{1}{8}a^{8}+\frac{1}{8}a^{6}-\frac{1}{4}a^{4}-\frac{3}{8}a^{2}-\frac{1}{8}$, $\frac{1}{8}a^{23}-\frac{1}{8}a^{17}-\frac{1}{8}a^{13}-\frac{1}{8}a^{11}+\frac{1}{8}a^{9}+\frac{1}{8}a^{7}-\frac{1}{4}a^{5}-\frac{3}{8}a^{3}-\frac{1}{8}a$, $\frac{1}{16}a^{24}-\frac{1}{8}a^{16}-\frac{1}{8}a^{12}+\frac{1}{16}a^{8}-\frac{1}{8}a^{4}+\frac{1}{16}$, $\frac{1}{16}a^{25}-\frac{1}{8}a^{17}-\frac{1}{8}a^{13}+\frac{1}{16}a^{9}-\frac{1}{8}a^{5}+\frac{1}{16}a$, $\frac{1}{16}a^{26}-\frac{1}{8}a^{12}-\frac{1}{16}a^{10}-\frac{1}{4}a^{8}+\frac{1}{8}a^{6}-\frac{1}{8}a^{4}-\frac{5}{16}a^{2}-\frac{3}{8}$, $\frac{1}{16}a^{27}-\frac{1}{8}a^{13}-\frac{1}{16}a^{11}-\frac{1}{4}a^{9}+\frac{1}{8}a^{7}-\frac{1}{8}a^{5}-\frac{5}{16}a^{3}-\frac{3}{8}a$, $\frac{1}{16}a^{28}-\frac{1}{8}a^{14}-\frac{1}{16}a^{12}-\frac{1}{4}a^{10}+\frac{1}{8}a^{8}-\frac{1}{8}a^{6}-\frac{5}{16}a^{4}-\frac{3}{8}a^{2}$, $\frac{1}{16}a^{29}-\frac{1}{8}a^{15}-\frac{1}{16}a^{13}-\frac{1}{4}a^{11}+\frac{1}{8}a^{9}-\frac{1}{8}a^{7}-\frac{5}{16}a^{5}-\frac{3}{8}a^{3}$, $\frac{1}{32}a^{30}-\frac{1}{32}a^{26}-\frac{1}{32}a^{24}-\frac{1}{16}a^{22}+\frac{1}{16}a^{16}+\frac{3}{32}a^{14}+\frac{1}{16}a^{12}-\frac{3}{32}a^{10}-\frac{1}{32}a^{8}+\frac{3}{32}a^{6}+\frac{1}{16}a^{4}-\frac{1}{32}a^{2}-\frac{1}{32}$, $\frac{1}{32}a^{31}-\frac{1}{32}a^{27}-\frac{1}{32}a^{25}-\frac{1}{16}a^{23}+\frac{1}{16}a^{17}+\frac{3}{32}a^{15}+\frac{1}{16}a^{13}-\frac{3}{32}a^{11}-\frac{1}{32}a^{9}+\frac{3}{32}a^{7}+\frac{1}{16}a^{5}-\frac{1}{32}a^{3}-\frac{1}{32}a$, $\frac{1}{12128}a^{32}-\frac{35}{3032}a^{31}-\frac{147}{12128}a^{30}-\frac{29}{3032}a^{29}+\frac{249}{12128}a^{28}+\frac{31}{3032}a^{27}-\frac{19}{3032}a^{26}+\frac{33}{1516}a^{25}+\frac{317}{12128}a^{24}+\frac{15}{758}a^{23}-\frac{361}{6064}a^{22}-\frac{33}{1516}a^{21}-\frac{20}{379}a^{20}+\frac{163}{3032}a^{19}+\frac{307}{6064}a^{18}-\frac{67}{1516}a^{17}-\frac{619}{12128}a^{16}+\frac{39}{1516}a^{15}+\frac{417}{12128}a^{14}-\frac{29}{1516}a^{13}-\frac{403}{12128}a^{12}+\frac{91}{758}a^{11}+\frac{1129}{6064}a^{10}+\frac{19}{1516}a^{9}-\frac{1437}{6064}a^{8}-\frac{377}{3032}a^{7}-\frac{1823}{12128}a^{6}-\frac{551}{1516}a^{5}-\frac{2105}{12128}a^{4}+\frac{65}{758}a^{3}+\frac{143}{379}a^{2}+\frac{875}{3032}a-\frac{5241}{12128}$, $\frac{1}{12128}a^{33}-\frac{39}{12128}a^{31}+\frac{149}{12128}a^{30}-\frac{73}{12128}a^{29}+\frac{29}{3032}a^{28}-\frac{75}{6064}a^{27}-\frac{143}{12128}a^{26}+\frac{135}{12128}a^{25}+\frac{277}{12128}a^{24}-\frac{237}{6064}a^{23}-\frac{265}{6064}a^{22}+\frac{75}{3032}a^{21}+\frac{31}{758}a^{20}-\frac{291}{6064}a^{19}+\frac{33}{758}a^{18}+\frac{141}{12128}a^{17}+\frac{411}{6064}a^{16}-\frac{1383}{12128}a^{15}+\frac{919}{12128}a^{14}-\frac{289}{12128}a^{13}-\frac{573}{6064}a^{12}+\frac{85}{1516}a^{11}-\frac{1709}{12128}a^{10}-\frac{515}{3032}a^{9}-\frac{2507}{12128}a^{8}-\frac{703}{12128}a^{7}+\frac{3019}{12128}a^{6}-\frac{4487}{12128}a^{5}+\frac{2875}{6064}a^{4}-\frac{1849}{6064}a^{3}+\frac{2493}{12128}a^{2}-\frac{1119}{12128}a+\frac{2657}{12128}$, $\frac{1}{14\!\cdots\!64}a^{34}-\frac{12\!\cdots\!67}{35\!\cdots\!16}a^{33}-\frac{29\!\cdots\!89}{17\!\cdots\!08}a^{32}+\frac{29\!\cdots\!07}{71\!\cdots\!32}a^{31}-\frac{46\!\cdots\!51}{71\!\cdots\!32}a^{30}-\frac{31\!\cdots\!93}{71\!\cdots\!32}a^{29}-\frac{25\!\cdots\!69}{14\!\cdots\!64}a^{28}-\frac{10\!\cdots\!59}{35\!\cdots\!16}a^{27}-\frac{40\!\cdots\!25}{14\!\cdots\!64}a^{26}-\frac{20\!\cdots\!01}{17\!\cdots\!08}a^{25}+\frac{11\!\cdots\!05}{14\!\cdots\!64}a^{24}+\frac{21\!\cdots\!85}{35\!\cdots\!16}a^{23}+\frac{22\!\cdots\!91}{71\!\cdots\!32}a^{22}+\frac{69\!\cdots\!35}{35\!\cdots\!16}a^{21}+\frac{44\!\cdots\!41}{71\!\cdots\!32}a^{20}-\frac{64\!\cdots\!74}{44\!\cdots\!27}a^{19}-\frac{33\!\cdots\!77}{14\!\cdots\!64}a^{18}-\frac{20\!\cdots\!81}{17\!\cdots\!08}a^{17}+\frac{37\!\cdots\!29}{35\!\cdots\!16}a^{16}-\frac{37\!\cdots\!39}{71\!\cdots\!32}a^{15}+\frac{27\!\cdots\!35}{71\!\cdots\!32}a^{14}+\frac{63\!\cdots\!49}{71\!\cdots\!32}a^{13}-\frac{10\!\cdots\!07}{14\!\cdots\!64}a^{12}+\frac{58\!\cdots\!57}{35\!\cdots\!16}a^{11}-\frac{81\!\cdots\!45}{71\!\cdots\!32}a^{10}-\frac{87\!\cdots\!49}{89\!\cdots\!54}a^{9}-\frac{34\!\cdots\!37}{14\!\cdots\!64}a^{8}-\frac{15\!\cdots\!33}{71\!\cdots\!32}a^{7}+\frac{31\!\cdots\!31}{35\!\cdots\!16}a^{6}-\frac{26\!\cdots\!23}{71\!\cdots\!32}a^{5}+\frac{42\!\cdots\!53}{14\!\cdots\!64}a^{4}+\frac{19\!\cdots\!77}{44\!\cdots\!27}a^{3}-\frac{31\!\cdots\!11}{14\!\cdots\!64}a^{2}-\frac{13\!\cdots\!21}{35\!\cdots\!16}a-\frac{66\!\cdots\!79}{14\!\cdots\!64}$, $\frac{1}{84\!\cdots\!96}a^{35}-\frac{19\!\cdots\!99}{84\!\cdots\!96}a^{34}+\frac{25\!\cdots\!43}{52\!\cdots\!06}a^{33}+\frac{66\!\cdots\!19}{42\!\cdots\!48}a^{32}+\frac{26\!\cdots\!45}{21\!\cdots\!24}a^{31}+\frac{92\!\cdots\!61}{42\!\cdots\!48}a^{30}-\frac{14\!\cdots\!95}{84\!\cdots\!96}a^{29}+\frac{19\!\cdots\!85}{84\!\cdots\!96}a^{28}+\frac{97\!\cdots\!65}{84\!\cdots\!96}a^{27}-\frac{62\!\cdots\!37}{84\!\cdots\!96}a^{26}+\frac{17\!\cdots\!27}{84\!\cdots\!96}a^{25}-\frac{16\!\cdots\!99}{84\!\cdots\!96}a^{24}+\frac{25\!\cdots\!29}{42\!\cdots\!48}a^{23}-\frac{25\!\cdots\!97}{42\!\cdots\!48}a^{22}+\frac{23\!\cdots\!69}{42\!\cdots\!48}a^{21}+\frac{16\!\cdots\!67}{42\!\cdots\!48}a^{20}-\frac{13\!\cdots\!41}{84\!\cdots\!96}a^{19}+\frac{28\!\cdots\!87}{84\!\cdots\!96}a^{18}-\frac{63\!\cdots\!51}{52\!\cdots\!06}a^{17}-\frac{31\!\cdots\!63}{42\!\cdots\!48}a^{16}-\frac{21\!\cdots\!95}{21\!\cdots\!24}a^{15}-\frac{17\!\cdots\!71}{42\!\cdots\!48}a^{14}-\frac{84\!\cdots\!41}{84\!\cdots\!96}a^{13}-\frac{47\!\cdots\!97}{84\!\cdots\!96}a^{12}+\frac{21\!\cdots\!31}{21\!\cdots\!24}a^{11}+\frac{85\!\cdots\!29}{42\!\cdots\!48}a^{10}+\frac{34\!\cdots\!77}{84\!\cdots\!96}a^{9}-\frac{15\!\cdots\!67}{84\!\cdots\!96}a^{8}+\frac{93\!\cdots\!23}{42\!\cdots\!48}a^{7}+\frac{14\!\cdots\!61}{10\!\cdots\!12}a^{6}-\frac{28\!\cdots\!13}{84\!\cdots\!96}a^{5}+\frac{45\!\cdots\!15}{84\!\cdots\!96}a^{4}-\frac{39\!\cdots\!61}{84\!\cdots\!96}a^{3}+\frac{61\!\cdots\!93}{84\!\cdots\!96}a^{2}-\frac{17\!\cdots\!57}{84\!\cdots\!96}a+\frac{41\!\cdots\!57}{84\!\cdots\!96}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{9184140999306974922247097181328673990348288143853597837307}{358164624685352177083172972799601710337064294804418257744857614616} a^{35} - \frac{47510439334793455254206855397865580954033502996129263893125}{1432658498741408708332691891198406841348257179217673030979430458464} a^{34} + \frac{768840675402678397575197476630144746807019429604458161156333}{716329249370704354166345945599203420674128589608836515489715229232} a^{33} + \frac{2458819936818752120245203501918467895832585239773346798832263}{1432658498741408708332691891198406841348257179217673030979430458464} a^{32} - \frac{7122592969890571040074306709305083078595040702880528115152585}{358164624685352177083172972799601710337064294804418257744857614616} a^{31} - \frac{13771457315911402162150735904959126118169836634402326842158261}{358164624685352177083172972799601710337064294804418257744857614616} a^{30} + \frac{150510815316246211097495029762368507082190831473625527817383137}{716329249370704354166345945599203420674128589608836515489715229232} a^{29} + \frac{351945105961642826283901367874759762493147355427818375300678601}{716329249370704354166345945599203420674128589608836515489715229232} a^{28} - \frac{483357595347797955192372159943834048380810030263063279062839009}{358164624685352177083172972799601710337064294804418257744857614616} a^{27} - \frac{2817960103240782314771750177721575417653110036256346877460403115}{716329249370704354166345945599203420674128589608836515489715229232} a^{26} + \frac{228930726162206110746101674091757272754809810621344728005618370}{44770578085669022135396621599950213792133036850552282218107201827} a^{25} + \frac{29194453854320240288606388420611348164359467535975457861203456701}{1432658498741408708332691891198406841348257179217673030979430458464} a^{24} - \frac{875551105034287682104040962050897391849879215511623284251373601}{89541156171338044270793243199900427584266073701104564436214403654} a^{23} - \frac{49951534465721728351328603295797018694566186037985064984439084171}{716329249370704354166345945599203420674128589608836515489715229232} a^{22} + \frac{248902842583982292521613251291040977400908633959636174391168263}{44770578085669022135396621599950213792133036850552282218107201827} a^{21} + \frac{126736692346680854956030003172628807101597328513980727992537971701}{716329249370704354166345945599203420674128589608836515489715229232} a^{20} + \frac{1522043440431059143360920546804308711419236250147154249840970477}{358164624685352177083172972799601710337064294804418257744857614616} a^{19} - \frac{611412624049512549854449809667171250468081148493014950943685972441}{1432658498741408708332691891198406841348257179217673030979430458464} a^{18} - \frac{171714675040716311403796241881284319880253109753665875369744192817}{716329249370704354166345945599203420674128589608836515489715229232} a^{17} + \frac{303687958149263753427904893243226294416964269260256363760891793097}{1432658498741408708332691891198406841348257179217673030979430458464} a^{16} - \frac{148423461741786656203160503822358348561890723786380159848996244379}{358164624685352177083172972799601710337064294804418257744857614616} a^{15} - \frac{579563349467052862210909331723704152405320110965417642809578386273}{716329249370704354166345945599203420674128589608836515489715229232} a^{14} + \frac{436148984949054136496238131000773229467135535774549997700120278819}{716329249370704354166345945599203420674128589608836515489715229232} a^{13} + \frac{341276001058789189524365934791140343823597873724428467530514532031}{716329249370704354166345945599203420674128589608836515489715229232} a^{12} - \frac{102628217041981101973821980875365678242287008566863115590220135961}{44770578085669022135396621599950213792133036850552282218107201827} a^{11} - \frac{1628571495841942386975268757135420581197230489780250376220941081473}{1432658498741408708332691891198406841348257179217673030979430458464} a^{10} + \frac{2556535350256257975349552517396749386015139542342444033546915617065}{716329249370704354166345945599203420674128589608836515489715229232} a^{9} + \frac{979534418624631172335253390877686954837879212590371239885122093847}{716329249370704354166345945599203420674128589608836515489715229232} a^{8} - \frac{1600272902095787881742361980208072876619077707703929058025355630613}{358164624685352177083172972799601710337064294804418257744857614616} a^{7} - \frac{99049463161543613270754798946611582366203545509124903030012649269}{89541156171338044270793243199900427584266073701104564436214403654} a^{6} + \frac{784461246538332010627819647012525008366030216711259846588527022345}{716329249370704354166345945599203420674128589608836515489715229232} a^{5} + \frac{942997609475975669860550463037234444662425880261567460997057286477}{358164624685352177083172972799601710337064294804418257744857614616} a^{4} - \frac{675505911511869284750732752124635158137278795893578237505466204369}{358164624685352177083172972799601710337064294804418257744857614616} a^{3} - \frac{630984043852746660236580170141695690867200083707270709027334484161}{179082312342676088541586486399800855168532147402209128872428807308} a^{2} + \frac{446815178726753994023770301284671690244872016915230130803773648283}{358164624685352177083172972799601710337064294804418257744857614616} a - \frac{864557963503414620632377737738297991474716817261661658332203991905}{1432658498741408708332691891198406841348257179217673030979430458464} \)  (order $14$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 42*x^34 - 12*x^33 + 798*x^32 + 444*x^31 - 8930*x^30 - 7224*x^29 + 64293*x^28 + 66808*x^27 - 308040*x^26 - 380412*x^25 + 1018573*x^24 + 1390296*x^23 - 2660256*x^22 - 3730568*x^21 + 6607119*x^20 + 9624456*x^19 - 7505542*x^18 - 2964660*x^17 + 28706040*x^16 + 6977356*x^15 - 34628742*x^14 + 28138392*x^13 + 70034750*x^12 - 59344320*x^11 - 97239042*x^10 + 110557824*x^9 + 103706163*x^8 - 146720820*x^7 + 54606518*x^6 - 96816432*x^5 + 280912497*x^4 - 164862264*x^3 + 36478572*x^2 - 7070100*x + 9128827)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 42*x^34 - 12*x^33 + 798*x^32 + 444*x^31 - 8930*x^30 - 7224*x^29 + 64293*x^28 + 66808*x^27 - 308040*x^26 - 380412*x^25 + 1018573*x^24 + 1390296*x^23 - 2660256*x^22 - 3730568*x^21 + 6607119*x^20 + 9624456*x^19 - 7505542*x^18 - 2964660*x^17 + 28706040*x^16 + 6977356*x^15 - 34628742*x^14 + 28138392*x^13 + 70034750*x^12 - 59344320*x^11 - 97239042*x^10 + 110557824*x^9 + 103706163*x^8 - 146720820*x^7 + 54606518*x^6 - 96816432*x^5 + 280912497*x^4 - 164862264*x^3 + 36478572*x^2 - 7070100*x + 9128827, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 42*x^34 - 12*x^33 + 798*x^32 + 444*x^31 - 8930*x^30 - 7224*x^29 + 64293*x^28 + 66808*x^27 - 308040*x^26 - 380412*x^25 + 1018573*x^24 + 1390296*x^23 - 2660256*x^22 - 3730568*x^21 + 6607119*x^20 + 9624456*x^19 - 7505542*x^18 - 2964660*x^17 + 28706040*x^16 + 6977356*x^15 - 34628742*x^14 + 28138392*x^13 + 70034750*x^12 - 59344320*x^11 - 97239042*x^10 + 110557824*x^9 + 103706163*x^8 - 146720820*x^7 + 54606518*x^6 - 96816432*x^5 + 280912497*x^4 - 164862264*x^3 + 36478572*x^2 - 7070100*x + 9128827);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 42*x^34 - 12*x^33 + 798*x^32 + 444*x^31 - 8930*x^30 - 7224*x^29 + 64293*x^28 + 66808*x^27 - 308040*x^26 - 380412*x^25 + 1018573*x^24 + 1390296*x^23 - 2660256*x^22 - 3730568*x^21 + 6607119*x^20 + 9624456*x^19 - 7505542*x^18 - 2964660*x^17 + 28706040*x^16 + 6977356*x^15 - 34628742*x^14 + 28138392*x^13 + 70034750*x^12 - 59344320*x^11 - 97239042*x^10 + 110557824*x^9 + 103706163*x^8 - 146720820*x^7 + 54606518*x^6 - 96816432*x^5 + 280912497*x^4 - 164862264*x^3 + 36478572*x^2 - 7070100*x + 9128827);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6^2$ (as 36T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_6^2$
Character table for $C_6^2$

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{14}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\sqrt{-2}, \sqrt{-7})\), 6.0.3359232.1, 6.0.1229312.1, 6.0.8065516032.1, 6.0.8065516032.2, 6.0.2250423.1, 6.6.1152216576.1, \(\Q(\zeta_{7})\), 6.6.8605184.1, 6.0.110270727.2, 6.6.56458612224.1, 6.0.110270727.1, 6.6.56458612224.2, 9.9.62523502209.1, 12.0.1327603038009163776.1, 12.0.74049191673856.1, 12.0.3187574894260002226176.2, 12.0.3187574894260002226176.3, 18.0.524682375772545974113841184768.4, 18.0.1340851596668237962730583.1, 18.18.179966054889983269121047526375424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{6}$ R ${\href{/padicField/11.3.0.1}{3} }^{12}$ ${\href{/padicField/13.6.0.1}{6} }^{6}$ ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.6.0.1}{6} }^{6}$ ${\href{/padicField/23.6.0.1}{6} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{6}$ ${\href{/padicField/43.3.0.1}{3} }^{12}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.9.5$x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.5$x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.5$x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.5$x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.5$x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.5$x^{6} + 12 x^{5} + 68 x^{4} + 226 x^{3} + 457 x^{2} + 514 x + 243$$2$$3$$9$$C_6$$[3]^{3}$
\(3\) Copy content Toggle raw display Deg $18$$3$$6$$24$
Deg $18$$3$$6$$24$
\(7\) Copy content Toggle raw display Deg $36$$6$$6$$30$