Normalized defining polynomial
\( x^{36} + 54 x^{34} + 1269 x^{32} + 17118 x^{30} + 147510 x^{28} + 857304 x^{26} + 3468195 x^{24} + 9962190 x^{22} + 20569950 x^{20} + 30703482 x^{18} + 33080274 x^{16} + 25472799 x^{14} + 13732377 x^{12} + 5001777 x^{10} + 1161216 x^{8} + 156168 x^{6} + 10341 x^{4} + 243 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{109} a^{32} + \frac{27}{109} a^{30} + \frac{23}{109} a^{28} + \frac{31}{109} a^{26} - \frac{51}{109} a^{24} - \frac{25}{109} a^{22} + \frac{43}{109} a^{20} + \frac{18}{109} a^{18} - \frac{30}{109} a^{16} + \frac{41}{109} a^{14} - \frac{12}{109} a^{12} - \frac{10}{109} a^{10} - \frac{54}{109} a^{8} - \frac{36}{109} a^{6} + \frac{44}{109} a^{4} - \frac{45}{109} a^{2} + \frac{35}{109}$, $\frac{1}{109} a^{33} + \frac{27}{109} a^{31} + \frac{23}{109} a^{29} + \frac{31}{109} a^{27} - \frac{51}{109} a^{25} - \frac{25}{109} a^{23} + \frac{43}{109} a^{21} + \frac{18}{109} a^{19} - \frac{30}{109} a^{17} + \frac{41}{109} a^{15} - \frac{12}{109} a^{13} - \frac{10}{109} a^{11} - \frac{54}{109} a^{9} - \frac{36}{109} a^{7} + \frac{44}{109} a^{5} - \frac{45}{109} a^{3} + \frac{35}{109} a$, $\frac{1}{102140268639359960440241042941} a^{34} - \frac{239583062672104440671165527}{102140268639359960440241042941} a^{32} + \frac{13335369090428041609783965327}{102140268639359960440241042941} a^{30} - \frac{39684868003465336383669622279}{102140268639359960440241042941} a^{28} + \frac{37576589533067046675033133932}{102140268639359960440241042941} a^{26} - \frac{12204273708471496285781340761}{102140268639359960440241042941} a^{24} - \frac{17003731897076903252373894695}{102140268639359960440241042941} a^{22} + \frac{17917587013035285879934198850}{102140268639359960440241042941} a^{20} + \frac{6148817521222229056183149323}{102140268639359960440241042941} a^{18} - \frac{10945077120088504974479525518}{102140268639359960440241042941} a^{16} - \frac{28252491669675871003333986781}{102140268639359960440241042941} a^{14} + \frac{28032487541945859397735128895}{102140268639359960440241042941} a^{12} + \frac{15967866237577143095154266299}{102140268639359960440241042941} a^{10} - \frac{28651765768666262006343582494}{102140268639359960440241042941} a^{8} - \frac{40619983613778289672513054049}{102140268639359960440241042941} a^{6} - \frac{349980046154614650239449453}{937066684764770279268266449} a^{4} - \frac{41913816524167683171399855437}{102140268639359960440241042941} a^{2} - \frac{633939339880283672343386737}{102140268639359960440241042941}$, $\frac{1}{102140268639359960440241042941} a^{35} - \frac{239583062672104440671165527}{102140268639359960440241042941} a^{33} + \frac{13335369090428041609783965327}{102140268639359960440241042941} a^{31} - \frac{39684868003465336383669622279}{102140268639359960440241042941} a^{29} + \frac{37576589533067046675033133932}{102140268639359960440241042941} a^{27} - \frac{12204273708471496285781340761}{102140268639359960440241042941} a^{25} - \frac{17003731897076903252373894695}{102140268639359960440241042941} a^{23} + \frac{17917587013035285879934198850}{102140268639359960440241042941} a^{21} + \frac{6148817521222229056183149323}{102140268639359960440241042941} a^{19} - \frac{10945077120088504974479525518}{102140268639359960440241042941} a^{17} - \frac{28252491669675871003333986781}{102140268639359960440241042941} a^{15} + \frac{28032487541945859397735128895}{102140268639359960440241042941} a^{13} + \frac{15967866237577143095154266299}{102140268639359960440241042941} a^{11} - \frac{28651765768666262006343582494}{102140268639359960440241042941} a^{9} - \frac{40619983613778289672513054049}{102140268639359960440241042941} a^{7} - \frac{349980046154614650239449453}{937066684764770279268266449} a^{5} - \frac{41913816524167683171399855437}{102140268639359960440241042941} a^{3} - \frac{633939339880283672343386737}{102140268639359960440241042941} a$
Class group and class number
$C_{19}\times C_{12483}$, which has order $237177$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{9156161337255}{404563972627459} a^{35} - \frac{553753748529990}{404563972627459} a^{33} - \frac{14776692695059680}{404563972627459} a^{31} - \frac{229566483260619435}{404563972627459} a^{29} - \frac{2309390501936937694}{404563972627459} a^{27} - \frac{15849660139449985557}{404563972627459} a^{25} - \frac{76307421122774899101}{404563972627459} a^{23} - \frac{261550565854389792942}{404563972627459} a^{21} - \frac{642586339561222429380}{404563972627459} a^{19} - \frac{1132379039636458057134}{404563972627459} a^{17} - \frac{1423142833573441910592}{404563972627459} a^{15} - \frac{1257865456133169734787}{404563972627459} a^{13} - \frac{762157772162799663924}{404563972627459} a^{11} - \frac{303227678870839233290}{404563972627459} a^{9} - \frac{73736314364009817522}{404563972627459} a^{7} - \frac{9701599181189978691}{404563972627459} a^{5} - \frac{557393906101162491}{404563972627459} a^{3} - \frac{8259308572854447}{404563972627459} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6550249244897.024 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $18^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ | $18^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||