Normalized defining polynomial
\( x^{36} + 12 x^{34} + 108 x^{32} + 888 x^{30} + 7056 x^{28} + 55296 x^{26} + 430848 x^{24} + 1651968 x^{22} + 5640192 x^{20} + 18551808 x^{18} + 59222016 x^{16} + 178163712 x^{14} + 451215360 x^{12} + 422019072 x^{10} + 394149888 x^{8} + 366280704 x^{6} + 334430208 x^{4} + 286654464 x^{2} + 191102976 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{24} a^{6}$, $\frac{1}{24} a^{7}$, $\frac{1}{48} a^{8}$, $\frac{1}{48} a^{9}$, $\frac{1}{96} a^{10}$, $\frac{1}{96} a^{11}$, $\frac{1}{576} a^{12}$, $\frac{1}{576} a^{13}$, $\frac{1}{4608} a^{14} + \frac{1}{4}$, $\frac{1}{4608} a^{15} + \frac{1}{4} a$, $\frac{1}{9216} a^{16} + \frac{1}{8} a^{2}$, $\frac{1}{9216} a^{17} + \frac{1}{8} a^{3}$, $\frac{1}{55296} a^{18} - \frac{1}{16} a^{4}$, $\frac{1}{55296} a^{19} - \frac{1}{16} a^{5}$, $\frac{1}{110592} a^{20} + \frac{1}{96} a^{6}$, $\frac{1}{110592} a^{21} + \frac{1}{96} a^{7}$, $\frac{1}{221184} a^{22} + \frac{1}{192} a^{8}$, $\frac{1}{221184} a^{23} + \frac{1}{192} a^{9}$, $\frac{1}{1327104} a^{24} - \frac{1}{384} a^{10}$, $\frac{1}{1327104} a^{25} - \frac{1}{384} a^{11}$, $\frac{1}{37124407296} a^{26} + \frac{3353}{9281101824} a^{24} + \frac{901}{515616768} a^{22} - \frac{139}{128904192} a^{20} + \frac{499}{96678144} a^{18} + \frac{1469}{42968064} a^{16} - \frac{1189}{64452096} a^{14} - \frac{22139}{32226048} a^{12} + \frac{3643}{2685504} a^{10} - \frac{1777}{447584} a^{8} + \frac{181}{111896} a^{6} - \frac{3083}{55948} a^{4} + \frac{6739}{111896} a^{2} + \frac{27711}{55948}$, $\frac{1}{37124407296} a^{27} + \frac{3353}{9281101824} a^{25} + \frac{901}{515616768} a^{23} - \frac{139}{128904192} a^{21} + \frac{499}{96678144} a^{19} + \frac{1469}{42968064} a^{17} - \frac{1189}{64452096} a^{15} - \frac{22139}{32226048} a^{13} + \frac{3643}{2685504} a^{11} - \frac{1777}{447584} a^{9} + \frac{181}{111896} a^{7} - \frac{3083}{55948} a^{5} + \frac{6739}{111896} a^{3} + \frac{27711}{55948} a$, $\frac{1}{296995258368} a^{28} + \frac{10333}{128904192} a^{14} + \frac{99225}{223792}$, $\frac{1}{296995258368} a^{29} + \frac{10333}{128904192} a^{15} + \frac{99225}{223792} a$, $\frac{1}{1781971550208} a^{30} + \frac{12769}{257808384} a^{16} - \frac{22873}{447584} a^{2}$, $\frac{1}{1781971550208} a^{31} + \frac{12769}{257808384} a^{17} - \frac{22873}{447584} a^{3}$, $\frac{1}{3563943100416} a^{32} + \frac{10333}{1546850304} a^{18} + \frac{33075}{895168} a^{4}$, $\frac{1}{3563943100416} a^{33} + \frac{10333}{1546850304} a^{19} + \frac{33075}{895168} a^{5}$, $\frac{1}{7127886200832} a^{34} + \frac{10333}{3093700608} a^{20} + \frac{33075}{1790336} a^{6}$, $\frac{1}{7127886200832} a^{35} + \frac{10333}{3093700608} a^{21} + \frac{33075}{1790336} a^{7}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{19}{131997892608} a^{32} + \frac{377893}{1546850304} a^{18} - \frac{1022295}{895168} a^{4} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||