Normalized defining polynomial
\( x^{36} + 78 x^{34} + 2691 x^{32} + 54444 x^{30} + 722475 x^{28} + 6665490 x^{26} + 44226585 x^{24} + 215382726 x^{22} + 778931478 x^{20} + 2103342228 x^{18} + 4241564028 x^{16} + 6356268126 x^{14} + 7002607950 x^{12} + 5568808401 x^{10} + 3105527607 x^{8} + 1160101683 x^{6} + 269070984 x^{4} + 33633873 x^{2} + 1601613 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{117} a^{12}$, $\frac{1}{117} a^{13}$, $\frac{1}{117} a^{14}$, $\frac{1}{117} a^{15}$, $\frac{1}{117} a^{16}$, $\frac{1}{117} a^{17}$, $\frac{1}{351} a^{18}$, $\frac{1}{351} a^{19}$, $\frac{1}{351} a^{20}$, $\frac{1}{351} a^{21}$, $\frac{1}{351} a^{22}$, $\frac{1}{351} a^{23}$, $\frac{1}{13689} a^{24}$, $\frac{1}{13689} a^{25}$, $\frac{1}{13689} a^{26}$, $\frac{1}{13689} a^{27}$, $\frac{1}{13689} a^{28}$, $\frac{1}{13689} a^{29}$, $\frac{1}{2176551} a^{30} + \frac{2}{241839} a^{28} - \frac{7}{241839} a^{26} + \frac{7}{241839} a^{24} - \frac{20}{18603} a^{22} + \frac{8}{18603} a^{20} - \frac{22}{18603} a^{18} - \frac{22}{6201} a^{16} - \frac{8}{2067} a^{14} - \frac{1}{2067} a^{12} + \frac{2}{53} a^{10} - \frac{5}{53} a^{8} - \frac{2}{159} a^{6} - \frac{25}{53} a^{4} + \frac{22}{53} a^{2} + \frac{15}{53}$, $\frac{1}{2176551} a^{31} + \frac{2}{241839} a^{29} - \frac{7}{241839} a^{27} + \frac{7}{241839} a^{25} - \frac{20}{18603} a^{23} + \frac{8}{18603} a^{21} - \frac{22}{18603} a^{19} - \frac{22}{6201} a^{17} - \frac{8}{2067} a^{15} - \frac{1}{2067} a^{13} + \frac{2}{53} a^{11} - \frac{5}{53} a^{9} - \frac{2}{159} a^{7} - \frac{25}{53} a^{5} + \frac{22}{53} a^{3} + \frac{15}{53} a$, $\frac{1}{2176551} a^{32} - \frac{23}{725517} a^{28} - \frac{25}{725517} a^{26} + \frac{8}{725517} a^{24} - \frac{1}{6201} a^{22} - \frac{7}{18603} a^{20} + \frac{4}{6201} a^{18} + \frac{1}{6201} a^{16} + \frac{5}{6201} a^{14} + \frac{23}{6201} a^{12} - \frac{17}{159} a^{10} + \frac{1}{53} a^{8} + \frac{14}{159} a^{6} - \frac{5}{53} a^{4} - \frac{10}{53} a^{2} - \frac{5}{53}$, $\frac{1}{2176551} a^{33} - \frac{23}{725517} a^{29} - \frac{25}{725517} a^{27} + \frac{8}{725517} a^{25} - \frac{1}{6201} a^{23} - \frac{7}{18603} a^{21} + \frac{4}{6201} a^{19} + \frac{1}{6201} a^{17} + \frac{5}{6201} a^{15} + \frac{23}{6201} a^{13} - \frac{17}{159} a^{11} + \frac{1}{53} a^{9} + \frac{14}{159} a^{7} - \frac{5}{53} a^{5} - \frac{10}{53} a^{3} - \frac{5}{53} a$, $\frac{1}{15351258188919159} a^{34} - \frac{13377029}{568565118108117} a^{32} + \frac{554442149}{15351258188919159} a^{30} - \frac{81126882622}{5117086062973053} a^{28} + \frac{16168186726}{5117086062973053} a^{26} - \frac{167079525316}{5117086062973053} a^{24} + \frac{52197210626}{43735778316009} a^{22} + \frac{47403238}{280957890681} a^{20} - \frac{14605635619}{14578592772003} a^{18} - \frac{171832933361}{43735778316009} a^{16} - \frac{47392751696}{43735778316009} a^{14} + \frac{132543827678}{43735778316009} a^{12} - \frac{24926738848}{1121430213231} a^{10} + \frac{30938181614}{1121430213231} a^{8} - \frac{34797986597}{373810071077} a^{6} - \frac{180627227693}{373810071077} a^{4} + \frac{40002298397}{373810071077} a^{2} + \frac{119885653926}{373810071077}$, $\frac{1}{15351258188919159} a^{35} - \frac{13377029}{568565118108117} a^{33} + \frac{554442149}{15351258188919159} a^{31} - \frac{81126882622}{5117086062973053} a^{29} + \frac{16168186726}{5117086062973053} a^{27} - \frac{167079525316}{5117086062973053} a^{25} + \frac{52197210626}{43735778316009} a^{23} + \frac{47403238}{280957890681} a^{21} - \frac{14605635619}{14578592772003} a^{19} - \frac{171832933361}{43735778316009} a^{17} - \frac{47392751696}{43735778316009} a^{15} + \frac{132543827678}{43735778316009} a^{13} - \frac{24926738848}{1121430213231} a^{11} + \frac{30938181614}{1121430213231} a^{9} - \frac{34797986597}{373810071077} a^{7} - \frac{180627227693}{373810071077} a^{5} + \frac{40002298397}{373810071077} a^{3} + \frac{119885653926}{373810071077} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_{12}$ (as 36T3):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_3\times C_{12}$ |
| Character table for $C_3\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||