Normalized defining polynomial
\( x^{36} - 36 x^{34} + 594 x^{32} - 5952 x^{30} + 40455 x^{28} - 197316 x^{26} + 712530 x^{24} - 1937520 x^{22} + 3996135 x^{20} - 6254878 x^{18} + 7458714 x^{16} - 7198686 x^{14} + 7211022 x^{12} - 9226998 x^{10} + 10819656 x^{8} - 8101332 x^{6} + 3128841 x^{4} - 468342 x^{2} + 33396841 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2584} a^{18} - \frac{9}{1292} a^{16} + \frac{135}{2584} a^{14} - \frac{273}{1292} a^{12} + \frac{1287}{2584} a^{10} + \frac{401}{1292} a^{8} - \frac{599}{1292} a^{6} - \frac{135}{646} a^{4} + \frac{81}{2584} a^{2} + \frac{985}{2584}$, $\frac{1}{2584} a^{19} - \frac{9}{1292} a^{17} + \frac{135}{2584} a^{15} - \frac{273}{1292} a^{13} + \frac{1287}{2584} a^{11} + \frac{401}{1292} a^{9} - \frac{599}{1292} a^{7} - \frac{135}{646} a^{5} + \frac{81}{2584} a^{3} + \frac{985}{2584} a$, $\frac{1}{2584} a^{20} - \frac{189}{2584} a^{16} - \frac{175}{646} a^{14} - \frac{789}{2584} a^{12} + \frac{89}{323} a^{10} + \frac{159}{1292} a^{8} + \frac{144}{323} a^{6} + \frac{41}{152} a^{4} - \frac{141}{2584} a^{2} - \frac{179}{1292}$, $\frac{1}{2584} a^{21} - \frac{189}{2584} a^{17} - \frac{175}{646} a^{15} - \frac{789}{2584} a^{13} + \frac{89}{323} a^{11} + \frac{159}{1292} a^{9} + \frac{144}{323} a^{7} + \frac{41}{152} a^{5} - \frac{141}{2584} a^{3} - \frac{179}{1292} a$, $\frac{1}{2584} a^{22} + \frac{533}{1292} a^{16} - \frac{557}{1292} a^{14} + \frac{439}{1292} a^{12} + \frac{35}{136} a^{10} + \frac{137}{1292} a^{8} - \frac{917}{2584} a^{6} + \frac{61}{136} a^{4} - \frac{553}{2584} a^{2} + \frac{117}{2584}$, $\frac{1}{2584} a^{23} + \frac{533}{1292} a^{17} - \frac{557}{1292} a^{15} + \frac{439}{1292} a^{13} + \frac{35}{136} a^{11} + \frac{137}{1292} a^{9} - \frac{917}{2584} a^{7} + \frac{61}{136} a^{5} - \frac{553}{2584} a^{3} + \frac{117}{2584} a$, $\frac{1}{2584} a^{24} - \frac{7}{1292} a^{16} - \frac{6}{17} a^{14} - \frac{1283}{2584} a^{12} + \frac{109}{646} a^{10} - \frac{545}{2584} a^{8} - \frac{853}{2584} a^{6} - \frac{1145}{2584} a^{4} - \frac{957}{2584} a^{2} - \frac{453}{1292}$, $\frac{1}{2584} a^{25} - \frac{7}{1292} a^{17} - \frac{6}{17} a^{15} - \frac{1283}{2584} a^{13} + \frac{109}{646} a^{11} - \frac{545}{2584} a^{9} - \frac{853}{2584} a^{7} - \frac{1145}{2584} a^{5} - \frac{957}{2584} a^{3} - \frac{453}{1292} a$, $\frac{1}{2584} a^{26} - \frac{291}{646} a^{16} + \frac{607}{2584} a^{14} + \frac{4}{19} a^{12} - \frac{615}{2584} a^{10} + \frac{39}{2584} a^{8} + \frac{9}{136} a^{6} - \frac{45}{152} a^{4} + \frac{3}{34} a^{2} + \frac{435}{1292}$, $\frac{1}{14932936} a^{27} - \frac{27}{14932936} a^{25} + \frac{81}{3733234} a^{23} - \frac{2277}{14932936} a^{21} - \frac{1163}{14932936} a^{19} + \frac{175725}{14932936} a^{17} - \frac{745281}{7466468} a^{15} + \frac{775752}{1866617} a^{13} + \frac{41299}{3733234} a^{11} - \frac{59581}{7466468} a^{9} + \frac{36398}{98243} a^{7} + \frac{1402705}{14932936} a^{5} + \frac{6091885}{14932936} a^{3} - \frac{3039781}{14932936} a$, $\frac{1}{86267571272} a^{28} - \frac{2903}{43133785636} a^{26} + \frac{75289}{43133785636} a^{24} - \frac{865099}{43133785636} a^{22} + \frac{11579953}{86267571272} a^{20} - \frac{16606491}{86267571272} a^{18} - \frac{56908650}{10783446409} a^{16} + \frac{79541817}{1627690024} a^{14} - \frac{2228722938}{10783446409} a^{12} - \frac{5357389067}{43133785636} a^{10} + \frac{42580818235}{86267571272} a^{8} - \frac{8521686097}{86267571272} a^{6} - \frac{25826535109}{86267571272} a^{4} - \frac{18362393989}{43133785636} a^{2} - \frac{5701897}{14927768}$, $\frac{1}{86267571272} a^{29} - \frac{29}{86267571272} a^{27} - \frac{5401}{86267571272} a^{25} + \frac{3725}{2270199244} a^{23} - \frac{393569}{21566892818} a^{21} + \frac{591773}{5074563016} a^{19} - \frac{2160051}{4540398488} a^{17} + \frac{816}{629911} a^{15} - \frac{6058635}{2537281508} a^{13} + \frac{33206418379}{86267571272} a^{11} - \frac{17600154945}{86267571272} a^{9} - \frac{973883867}{5074563016} a^{7} - \frac{4468895143}{10783446409} a^{5} + \frac{34477635}{2537281508} a^{3} - \frac{17627573845}{86267571272} a$, $\frac{1}{86267571272} a^{30} - \frac{173775}{86267571272} a^{26} + \frac{563539}{10783446409} a^{24} + \frac{3755137}{21566892818} a^{22} + \frac{3006487}{21566892818} a^{20} + \frac{1441915}{10783446409} a^{18} + \frac{12651010741}{43133785636} a^{16} + \frac{8406275807}{86267571272} a^{14} - \frac{22138839347}{86267571272} a^{12} - \frac{6694904409}{86267571272} a^{10} + \frac{1500326695}{21566892818} a^{8} + \frac{11644908669}{86267571272} a^{6} + \frac{16191537601}{86267571272} a^{4} + \frac{5980882857}{86267571272} a^{2} + \frac{7435057}{14927768}$, $\frac{1}{86267571272} a^{31} - \frac{465}{86267571272} a^{27} - \frac{85529}{43133785636} a^{25} + \frac{129483}{2537281508} a^{23} - \frac{15362809}{86267571272} a^{21} + \frac{1285936}{10783446409} a^{19} - \frac{2166544773}{86267571272} a^{17} + \frac{25772642601}{86267571272} a^{15} - \frac{1024102563}{10783446409} a^{13} - \frac{20797947889}{86267571272} a^{11} - \frac{7158403305}{43133785636} a^{9} + \frac{7049293615}{86267571272} a^{7} - \frac{7683191045}{43133785636} a^{5} + \frac{821276869}{2537281508} a^{3} + \frac{5504227507}{86267571272} a$, $\frac{1}{86267571272} a^{32} - \frac{358856}{10783446409} a^{26} + \frac{3825313}{43133785636} a^{24} + \frac{3681799}{21566892818} a^{22} - \frac{791189}{5074563016} a^{20} - \frac{814915}{10783446409} a^{18} - \frac{3777431351}{86267571272} a^{16} - \frac{8068246601}{86267571272} a^{14} + \frac{98634965}{1627690024} a^{12} - \frac{177539037}{5074563016} a^{10} - \frac{16938727571}{43133785636} a^{8} + \frac{4775647495}{21566892818} a^{6} - \frac{14758741711}{43133785636} a^{4} - \frac{16454497267}{43133785636} a^{2} + \frac{1851761}{3731942}$, $\frac{1}{86267571272} a^{33} + \frac{321}{86267571272} a^{27} - \frac{3100371}{86267571272} a^{25} + \frac{149971}{1268640754} a^{23} - \frac{3793279}{43133785636} a^{21} - \frac{7160567}{86267571272} a^{19} + \frac{9070545063}{43133785636} a^{17} - \frac{18013040143}{86267571272} a^{15} + \frac{205606039}{1627690024} a^{13} + \frac{35142133383}{86267571272} a^{11} + \frac{17614110237}{43133785636} a^{9} - \frac{15113750935}{43133785636} a^{7} - \frac{11353006747}{86267571272} a^{5} + \frac{5231516253}{86267571272} a^{3} + \frac{27704408363}{86267571272} a$, $\frac{1}{86267571272} a^{34} - \frac{1236645}{86267571272} a^{26} - \frac{4752227}{86267571272} a^{24} + \frac{1705309}{10783446409} a^{22} + \frac{1853277}{10783446409} a^{20} + \frac{479947}{21566892818} a^{18} - \frac{35860137039}{86267571272} a^{16} - \frac{136546417}{1627690024} a^{14} + \frac{1774682488}{10783446409} a^{12} + \frac{4305218921}{86267571272} a^{10} - \frac{4667664351}{43133785636} a^{8} - \frac{18659694475}{86267571272} a^{6} - \frac{29037644525}{86267571272} a^{4} - \frac{10441924015}{86267571272} a^{2} + \frac{76465}{1865971}$, $\frac{1}{86267571272} a^{35} - \frac{367}{86267571272} a^{27} - \frac{2373225}{43133785636} a^{25} + \frac{3393287}{21566892818} a^{23} + \frac{2092491}{43133785636} a^{21} - \frac{304357}{86267571272} a^{19} - \frac{25603940089}{86267571272} a^{17} - \frac{108413385}{813845012} a^{15} - \frac{17863405407}{86267571272} a^{13} + \frac{647955082}{10783446409} a^{11} + \frac{33142646117}{86267571272} a^{9} - \frac{10567424611}{21566892818} a^{7} - \frac{16754847663}{43133785636} a^{5} + \frac{37990779}{267082264} a^{3} + \frac{29175033001}{86267571272} a$
Class group and class number
$C_{1406}$, which has order $1406$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{439204} a^{27} - \frac{27}{439204} a^{25} + \frac{81}{109801} a^{23} - \frac{2277}{439204} a^{21} + \frac{10395}{439204} a^{19} - \frac{1701}{23116} a^{17} + \frac{918}{5779} a^{15} - \frac{1377}{5779} a^{13} + \frac{53703}{219602} a^{11} - \frac{36465}{219602} a^{9} + \frac{7722}{109801} a^{7} - \frac{7371}{439204} a^{5} + \frac{819}{439204} a^{3} - \frac{27}{439204} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5100074719720140.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{36}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||