Normalized defining polynomial
\( x^{36} + 36 x^{34} + 594 x^{32} + 5952 x^{30} + 40455 x^{28} + 197316 x^{26} + 712530 x^{24} + 1937520 x^{22} + 3996135 x^{20} + 6243322 x^{18} + 7250706 x^{16} + 5638626 x^{14} + 901446 x^{12} - 5645574 x^{10} - 9773136 x^{8} - 7915284 x^{6} - 3111399 x^{4} - 467694 x^{2} + 33373729 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2584} a^{18} + \frac{9}{1292} a^{16} + \frac{135}{2584} a^{14} + \frac{273}{1292} a^{12} + \frac{1287}{2584} a^{10} - \frac{401}{1292} a^{8} - \frac{599}{1292} a^{6} + \frac{135}{646} a^{4} + \frac{81}{2584} a^{2} + \frac{989}{2584}$, $\frac{1}{2584} a^{19} + \frac{9}{1292} a^{17} + \frac{135}{2584} a^{15} + \frac{273}{1292} a^{13} + \frac{1287}{2584} a^{11} - \frac{401}{1292} a^{9} - \frac{599}{1292} a^{7} + \frac{135}{646} a^{5} + \frac{81}{2584} a^{3} + \frac{989}{2584} a$, $\frac{1}{2584} a^{20} - \frac{189}{2584} a^{16} + \frac{175}{646} a^{14} - \frac{789}{2584} a^{12} - \frac{89}{323} a^{10} + \frac{159}{1292} a^{8} - \frac{144}{323} a^{6} + \frac{41}{152} a^{4} - \frac{469}{2584} a^{2} + \frac{143}{1292}$, $\frac{1}{2584} a^{21} - \frac{189}{2584} a^{17} + \frac{175}{646} a^{15} - \frac{789}{2584} a^{13} - \frac{89}{323} a^{11} + \frac{159}{1292} a^{9} - \frac{144}{323} a^{7} + \frac{41}{152} a^{5} - \frac{469}{2584} a^{3} + \frac{143}{1292} a$, $\frac{1}{2584} a^{22} - \frac{533}{1292} a^{16} - \frac{557}{1292} a^{14} - \frac{439}{1292} a^{12} + \frac{35}{136} a^{10} - \frac{137}{1292} a^{8} - \frac{917}{2584} a^{6} + \frac{815}{2584} a^{4} + \frac{91}{2584} a^{2} + \frac{873}{2584}$, $\frac{1}{2584} a^{23} - \frac{533}{1292} a^{17} - \frac{557}{1292} a^{15} - \frac{439}{1292} a^{13} + \frac{35}{136} a^{11} - \frac{137}{1292} a^{9} - \frac{917}{2584} a^{7} + \frac{815}{2584} a^{5} + \frac{91}{2584} a^{3} + \frac{873}{2584} a$, $\frac{1}{2584} a^{24} - \frac{7}{1292} a^{16} + \frac{6}{17} a^{14} - \frac{1283}{2584} a^{12} - \frac{109}{646} a^{10} - \frac{545}{2584} a^{8} + \frac{243}{2584} a^{6} - \frac{501}{2584} a^{4} - \frac{637}{2584} a^{2} + \frac{1}{1292}$, $\frac{1}{2584} a^{25} - \frac{7}{1292} a^{17} + \frac{6}{17} a^{15} - \frac{1283}{2584} a^{13} - \frac{109}{646} a^{11} - \frac{545}{2584} a^{9} + \frac{243}{2584} a^{7} - \frac{501}{2584} a^{5} - \frac{637}{2584} a^{3} + \frac{1}{1292} a$, $\frac{1}{2584} a^{26} + \frac{291}{646} a^{16} + \frac{607}{2584} a^{14} - \frac{4}{19} a^{12} - \frac{615}{2584} a^{10} - \frac{649}{2584} a^{8} + \frac{815}{2584} a^{6} - \frac{829}{2584} a^{4} + \frac{142}{323} a^{2} + \frac{463}{1292}$, $\frac{1}{14927768} a^{27} + \frac{27}{14927768} a^{25} + \frac{81}{3731942} a^{23} + \frac{2277}{14927768} a^{21} - \frac{61}{785672} a^{19} - \frac{175653}{14927768} a^{17} - \frac{745011}{7463884} a^{15} - \frac{775479}{1865971} a^{13} + \frac{20647}{1865971} a^{11} + \frac{13449}{1865971} a^{9} + \frac{2713303}{7463884} a^{7} - \frac{1714175}{14927768} a^{5} + \frac{5743157}{14927768} a^{3} - \frac{4945085}{14927768} a$, $\frac{1}{86267571272} a^{28} - \frac{2875}{43133785636} a^{26} - \frac{74939}{43133785636} a^{24} - \frac{862523}{43133785636} a^{22} - \frac{11555159}{86267571272} a^{20} - \frac{16524563}{86267571272} a^{18} + \frac{113864781}{21566892818} a^{16} + \frac{4216026381}{86267571272} a^{14} + \frac{4457534055}{21566892818} a^{12} - \frac{5357252931}{43133785636} a^{10} - \frac{42513911533}{86267571272} a^{8} - \frac{7987480801}{86267571272} a^{6} + \frac{27161952799}{86267571272} a^{4} - \frac{17828229265}{43133785636} a^{2} + \frac{2201797}{14932936}$, $\frac{1}{86267571272} a^{29} + \frac{29}{86267571272} a^{27} + \frac{6155}{86267571272} a^{25} + \frac{73675}{43133785636} a^{23} + \frac{200453}{10783446409} a^{21} + \frac{10162859}{86267571272} a^{19} + \frac{2173449}{4540398488} a^{17} + \frac{43422}{33385283} a^{15} + \frac{6075165}{2537281508} a^{13} + \frac{33206905463}{86267571272} a^{11} + \frac{17600436941}{86267571272} a^{9} - \frac{874878619}{4540398488} a^{7} + \frac{17641894147}{43133785636} a^{5} + \frac{29681712}{10783446409} a^{3} + \frac{17160179941}{86267571272} a$, $\frac{1}{86267571272} a^{30} + \frac{172905}{86267571272} a^{26} + \frac{1123453}{21566892818} a^{24} - \frac{111328}{634320377} a^{22} + \frac{1426205}{10783446409} a^{20} - \frac{6828335}{43133785636} a^{18} + \frac{12648481651}{43133785636} a^{16} - \frac{8414706107}{86267571272} a^{14} - \frac{22148581027}{86267571272} a^{12} + \frac{6687290517}{86267571272} a^{10} + \frac{499293050}{10783446409} a^{8} - \frac{27604235103}{86267571272} a^{6} + \frac{17259683957}{86267571272} a^{4} + \frac{2173681163}{5074563016} a^{2} - \frac{2721851}{14932936}$, $\frac{1}{86267571272} a^{31} - \frac{465}{86267571272} a^{27} - \frac{93589}{43133785636} a^{25} - \frac{2270961}{43133785636} a^{23} - \frac{16115737}{86267571272} a^{21} - \frac{6516269}{43133785636} a^{19} - \frac{2173542093}{86267571272} a^{17} - \frac{236562009}{791445608} a^{15} - \frac{1026105163}{10783446409} a^{13} + \frac{20783889637}{86267571272} a^{11} - \frac{7162513905}{43133785636} a^{9} - \frac{4982420509}{86267571272} a^{7} - \frac{472282397}{43133785636} a^{5} - \frac{4910980953}{21566892818} a^{3} + \frac{1600507731}{4540398488} a$, $\frac{1}{86267571272} a^{32} - \frac{357616}{10783446409} a^{26} - \frac{70421}{813845012} a^{24} + \frac{4092487}{21566892818} a^{22} - \frac{293445}{2270199244} a^{20} - \frac{8805403}{86267571272} a^{18} + \frac{1195251628}{10783446409} a^{16} - \frac{17908395753}{43133785636} a^{14} + \frac{379365664}{10783446409} a^{12} - \frac{11048158037}{43133785636} a^{10} - \frac{1526574811}{43133785636} a^{8} - \frac{12707522691}{43133785636} a^{6} - \frac{1115361045}{4540398488} a^{4} - \frac{4639419956}{10783446409} a^{2} - \frac{3913313}{14932936}$, $\frac{1}{86267571272} a^{33} - \frac{1}{267082264} a^{27} + \frac{3001143}{86267571272} a^{25} + \frac{2104511}{21566892818} a^{23} - \frac{3841755}{43133785636} a^{21} + \frac{7140851}{43133785636} a^{19} - \frac{2075500560}{10783446409} a^{17} - \frac{637607910}{10783446409} a^{15} + \frac{42832384447}{86267571272} a^{13} - \frac{279667153}{2537281508} a^{11} - \frac{4815380595}{43133785636} a^{9} - \frac{1245916411}{43133785636} a^{7} - \frac{183216365}{791445608} a^{5} + \frac{980254711}{21566892818} a^{3} - \frac{207384729}{21566892818} a$, $\frac{1}{86267571272} a^{34} + \frac{1143893}{86267571272} a^{26} - \frac{6607267}{86267571272} a^{24} + \frac{2676443}{86267571272} a^{22} - \frac{6134121}{43133785636} a^{20} - \frac{3653699}{43133785636} a^{18} + \frac{7369587433}{86267571272} a^{16} - \frac{25850315191}{86267571272} a^{14} + \frac{6629948075}{21566892818} a^{12} - \frac{8166698385}{21566892818} a^{10} - \frac{1079227797}{2270199244} a^{8} - \frac{3509100615}{21566892818} a^{6} + \frac{1636775772}{10783446409} a^{4} + \frac{12381050157}{43133785636} a^{2} + \frac{1715717}{14932936}$, $\frac{1}{86267571272} a^{35} - \frac{349}{86267571272} a^{27} - \frac{2058259}{43133785636} a^{25} - \frac{204963}{21566892818} a^{23} - \frac{6827601}{43133785636} a^{21} - \frac{2067780}{10783446409} a^{19} - \frac{9646770531}{86267571272} a^{17} + \frac{582238747}{5074563016} a^{15} + \frac{7896600723}{86267571272} a^{13} - \frac{27799771751}{86267571272} a^{11} - \frac{22935579743}{86267571272} a^{9} - \frac{3865075457}{21566892818} a^{7} - \frac{31685908}{203461253} a^{5} - \frac{6883431271}{43133785636} a^{3} - \frac{10934300779}{43133785636} a$
Class group and class number
$C_{923742}$, which has order $923742$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5723956792899.807 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||