Normalized defining polynomial
\( x^{36} - 17 x^{34} + 169 x^{32} - 1130 x^{30} + 5664 x^{28} - 21853 x^{26} + 66874 x^{24} - 162613 x^{22} + 316711 x^{20} - 487810 x^{18} + 592078 x^{16} - 549123 x^{14} + 384931 x^{12} - 190091 x^{10} + 66033 x^{8} - 13002 x^{6} + 1695 x^{4} - 45 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{37} a^{28} + \frac{4}{37} a^{26} + \frac{16}{37} a^{24} - \frac{11}{37} a^{16} - \frac{7}{37} a^{14} + \frac{9}{37} a^{12} + \frac{10}{37} a^{4} + \frac{3}{37} a^{2} + \frac{12}{37}$, $\frac{1}{37} a^{29} + \frac{4}{37} a^{27} + \frac{16}{37} a^{25} - \frac{11}{37} a^{17} - \frac{7}{37} a^{15} + \frac{9}{37} a^{13} + \frac{10}{37} a^{5} + \frac{3}{37} a^{3} + \frac{12}{37} a$, $\frac{1}{37} a^{30} + \frac{10}{37} a^{24} - \frac{11}{37} a^{18} + \frac{1}{37} a^{12} + \frac{10}{37} a^{6} - \frac{11}{37}$, $\frac{1}{37} a^{31} + \frac{10}{37} a^{25} - \frac{11}{37} a^{19} + \frac{1}{37} a^{13} + \frac{10}{37} a^{7} - \frac{11}{37} a$, $\frac{1}{37} a^{32} + \frac{10}{37} a^{26} - \frac{11}{37} a^{20} + \frac{1}{37} a^{14} + \frac{10}{37} a^{8} - \frac{11}{37} a^{2}$, $\frac{1}{37} a^{33} + \frac{10}{37} a^{27} - \frac{11}{37} a^{21} + \frac{1}{37} a^{15} + \frac{10}{37} a^{9} - \frac{11}{37} a^{3}$, $\frac{1}{57118061071237599258033288313} a^{34} - \frac{562600824958963995812081486}{57118061071237599258033288313} a^{32} - \frac{448807443347415556458904948}{57118061071237599258033288313} a^{30} - \frac{533817949968534897231750798}{57118061071237599258033288313} a^{28} + \frac{33962486031347116744561722}{249423847472653271869140997} a^{26} - \frac{9930900060489045750964940968}{57118061071237599258033288313} a^{24} + \frac{15691695729946070417197777447}{57118061071237599258033288313} a^{22} + \frac{25774056983632964157176648148}{57118061071237599258033288313} a^{20} - \frac{1616026988670696881567624688}{57118061071237599258033288313} a^{18} - \frac{22156432587936718189242127121}{57118061071237599258033288313} a^{16} - \frac{13201468499411361331930015822}{57118061071237599258033288313} a^{14} - \frac{15882856580042423864710821167}{57118061071237599258033288313} a^{12} + \frac{4471241508449024007978869677}{57118061071237599258033288313} a^{10} + \frac{27263888700260645096868472200}{57118061071237599258033288313} a^{8} - \frac{20560851795679057364022555702}{57118061071237599258033288313} a^{6} + \frac{20976725452887937630990242929}{57118061071237599258033288313} a^{4} + \frac{23706273027634887149215856239}{57118061071237599258033288313} a^{2} - \frac{9961109638644629283251629416}{57118061071237599258033288313}$, $\frac{1}{57118061071237599258033288313} a^{35} - \frac{562600824958963995812081486}{57118061071237599258033288313} a^{33} - \frac{448807443347415556458904948}{57118061071237599258033288313} a^{31} - \frac{533817949968534897231750798}{57118061071237599258033288313} a^{29} + \frac{33962486031347116744561722}{249423847472653271869140997} a^{27} - \frac{9930900060489045750964940968}{57118061071237599258033288313} a^{25} + \frac{15691695729946070417197777447}{57118061071237599258033288313} a^{23} + \frac{25774056983632964157176648148}{57118061071237599258033288313} a^{21} - \frac{1616026988670696881567624688}{57118061071237599258033288313} a^{19} - \frac{22156432587936718189242127121}{57118061071237599258033288313} a^{17} - \frac{13201468499411361331930015822}{57118061071237599258033288313} a^{15} - \frac{15882856580042423864710821167}{57118061071237599258033288313} a^{13} + \frac{4471241508449024007978869677}{57118061071237599258033288313} a^{11} + \frac{27263888700260645096868472200}{57118061071237599258033288313} a^{9} - \frac{20560851795679057364022555702}{57118061071237599258033288313} a^{7} + \frac{20976725452887937630990242929}{57118061071237599258033288313} a^{5} + \frac{23706273027634887149215856239}{57118061071237599258033288313} a^{3} - \frac{9961109638644629283251629416}{57118061071237599258033288313} a$
Class group and class number
$C_{171}$, which has order $171$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3119768034844994278395666934}{57118061071237599258033288313} a^{35} - \frac{52686989737560164127211774886}{57118061071237599258033288313} a^{33} + \frac{521262559950391673415837953047}{57118061071237599258033288313} a^{31} - \frac{3465598390908035834055204859481}{57118061071237599258033288313} a^{29} + \frac{75408414660554749807210242843}{249423847472653271869140997} a^{27} - \frac{66150057942679514451058229463121}{57118061071237599258033288313} a^{25} + \frac{200759166176499311751503439400129}{57118061071237599258033288313} a^{23} - \frac{483041260331622135857931022469482}{57118061071237599258033288313} a^{21} + \frac{928503978511893230542710915712580}{57118061071237599258033288313} a^{19} - \frac{1404660975853884939458076936570698}{57118061071237599258033288313} a^{17} + \frac{1664382056444629854639293416812681}{57118061071237599258033288313} a^{15} - \frac{1488216613926939599168448112804054}{57118061071237599258033288313} a^{13} + \frac{988768418221129181284238929520978}{57118061071237599258033288313} a^{11} - \frac{442023473554713121530554571519222}{57118061071237599258033288313} a^{9} + \frac{130253680987610904059613358788156}{57118061071237599258033288313} a^{7} - \frac{14528014841503868895874615064517}{57118061071237599258033288313} a^{5} + \frac{387861834973960968728909210295}{57118061071237599258033288313} a^{3} + \frac{337657092403592416021801765204}{57118061071237599258033288313} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119587984215961.08 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{4}$ | $18^{2}$ | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{36}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 19 | Data not computed | ||||||