Normalized defining polynomial
\( x^{36} + 51 x^{34} + 1129 x^{32} + 14310 x^{30} + 115592 x^{28} + 628407 x^{26} + 2373706 x^{24} + 6356559 x^{22} + 12218191 x^{20} + 16953894 x^{18} + 16964206 x^{16} + 12133089 x^{14} + 6090371 x^{12} + 2080353 x^{10} + 460449 x^{8} + 61182 x^{6} + 4335 x^{4} + 135 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{191} a^{32} - \frac{26}{191} a^{30} + \frac{62}{191} a^{28} - \frac{58}{191} a^{26} + \frac{68}{191} a^{24} - \frac{72}{191} a^{22} + \frac{34}{191} a^{20} - \frac{75}{191} a^{18} - \frac{94}{191} a^{16} - \frac{30}{191} a^{14} + \frac{62}{191} a^{12} + \frac{14}{191} a^{10} - \frac{20}{191} a^{8} + \frac{2}{191} a^{6} + \frac{54}{191} a^{4} + \frac{80}{191} a^{2} - \frac{44}{191}$, $\frac{1}{191} a^{33} - \frac{26}{191} a^{31} + \frac{62}{191} a^{29} - \frac{58}{191} a^{27} + \frac{68}{191} a^{25} - \frac{72}{191} a^{23} + \frac{34}{191} a^{21} - \frac{75}{191} a^{19} - \frac{94}{191} a^{17} - \frac{30}{191} a^{15} + \frac{62}{191} a^{13} + \frac{14}{191} a^{11} - \frac{20}{191} a^{9} + \frac{2}{191} a^{7} + \frac{54}{191} a^{5} + \frac{80}{191} a^{3} - \frac{44}{191} a$, $\frac{1}{338790140617299720099338629} a^{34} - \frac{397072552054221897523927}{338790140617299720099338629} a^{32} + \frac{141362563678141518527336116}{338790140617299720099338629} a^{30} + \frac{96630908446260080571412799}{338790140617299720099338629} a^{28} + \frac{44092964371363913615683696}{338790140617299720099338629} a^{26} - \frac{154604783883035881443092879}{338790140617299720099338629} a^{24} + \frac{59798427387781854796054806}{338790140617299720099338629} a^{22} - \frac{47640908691563914641554989}{338790140617299720099338629} a^{20} + \frac{97908979576965514633910660}{338790140617299720099338629} a^{18} + \frac{30450645831861416557665230}{338790140617299720099338629} a^{16} - \frac{33325894172620589671520700}{338790140617299720099338629} a^{14} + \frac{27983465610529562439295501}{338790140617299720099338629} a^{12} - \frac{162480109388502230759755198}{338790140617299720099338629} a^{10} + \frac{112527384127951252434424045}{338790140617299720099338629} a^{8} + \frac{69738267733371272948418866}{338790140617299720099338629} a^{6} - \frac{84347799751206012809056347}{338790140617299720099338629} a^{4} + \frac{147164494731434794640214441}{338790140617299720099338629} a^{2} - \frac{36440309813201613027660413}{338790140617299720099338629}$, $\frac{1}{338790140617299720099338629} a^{35} - \frac{397072552054221897523927}{338790140617299720099338629} a^{33} + \frac{141362563678141518527336116}{338790140617299720099338629} a^{31} + \frac{96630908446260080571412799}{338790140617299720099338629} a^{29} + \frac{44092964371363913615683696}{338790140617299720099338629} a^{27} - \frac{154604783883035881443092879}{338790140617299720099338629} a^{25} + \frac{59798427387781854796054806}{338790140617299720099338629} a^{23} - \frac{47640908691563914641554989}{338790140617299720099338629} a^{21} + \frac{97908979576965514633910660}{338790140617299720099338629} a^{19} + \frac{30450645831861416557665230}{338790140617299720099338629} a^{17} - \frac{33325894172620589671520700}{338790140617299720099338629} a^{15} + \frac{27983465610529562439295501}{338790140617299720099338629} a^{13} - \frac{162480109388502230759755198}{338790140617299720099338629} a^{11} + \frac{112527384127951252434424045}{338790140617299720099338629} a^{9} + \frac{69738267733371272948418866}{338790140617299720099338629} a^{7} - \frac{84347799751206012809056347}{338790140617299720099338629} a^{5} + \frac{147164494731434794640214441}{338790140617299720099338629} a^{3} - \frac{36440309813201613027660413}{338790140617299720099338629} a$
Class group and class number
$C_{81529}$, which has order $81529$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{59561509973630}{15667926926913551} a^{35} + \frac{3112708933605875}{15667926926913551} a^{33} + \frac{69482806818005545}{15667926926913551} a^{31} + \frac{858399173246355855}{15667926926913551} a^{29} + \frac{6284825315838164355}{15667926926913551} a^{27} + \frac{25949709904771875205}{15667926926913551} a^{25} + \frac{190289360008466200}{82031031030961} a^{23} - \frac{200796361645179790130}{15667926926913551} a^{21} - \frac{1346198266545412316466}{15667926926913551} a^{19} - \frac{3964675996476563721921}{15667926926913551} a^{17} - \frac{7093722793120017574377}{15667926926913551} a^{15} - \frac{8245601636152080355870}{15667926926913551} a^{13} - \frac{6287701511979159303664}{15667926926913551} a^{11} - \frac{3080802927178378824528}{15667926926913551} a^{9} - \frac{921573601675037044693}{15667926926913551} a^{7} - \frac{152795559134850489211}{15667926926913551} a^{5} - \frac{11634293724128822660}{15667926926913551} a^{3} - \frac{259134257421887306}{15667926926913551} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3431432369157.3267 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | R | $18^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||