Normalized defining polynomial
\( x^{36} - 354 x^{30} + 122947 x^{24} - 838624 x^{18} + 5611807 x^{12} - 2369 x^{6} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{62015} a^{24} + \frac{4335}{12403} a^{18} + \frac{14541}{62015} a^{12} + \frac{3174}{12403} a^{6} + \frac{18311}{62015}$, $\frac{1}{62015} a^{25} + \frac{4335}{12403} a^{19} + \frac{14541}{62015} a^{13} + \frac{3174}{12403} a^{7} + \frac{18311}{62015} a$, $\frac{1}{62015} a^{26} + \frac{4335}{12403} a^{20} + \frac{14541}{62015} a^{14} + \frac{3174}{12403} a^{8} + \frac{18311}{62015} a^{2}$, $\frac{1}{62015} a^{27} + \frac{4335}{12403} a^{21} + \frac{14541}{62015} a^{15} + \frac{3174}{12403} a^{9} + \frac{18311}{62015} a^{3}$, $\frac{1}{62015} a^{28} + \frac{4335}{12403} a^{22} + \frac{14541}{62015} a^{16} + \frac{3174}{12403} a^{10} + \frac{18311}{62015} a^{4}$, $\frac{1}{62015} a^{29} + \frac{4335}{12403} a^{23} + \frac{14541}{62015} a^{17} + \frac{3174}{12403} a^{11} + \frac{18311}{62015} a^{5}$, $\frac{1}{42787497099335045} a^{30} + \frac{65876963448}{8557499419867009} a^{24} + \frac{12738486085268876}{42787497099335045} a^{18} - \frac{734243975729351}{8557499419867009} a^{12} + \frac{7282103864965656}{42787497099335045} a^{6} + \frac{3195150047441441}{8557499419867009}$, $\frac{1}{42787497099335045} a^{31} + \frac{65876963448}{8557499419867009} a^{25} + \frac{12738486085268876}{42787497099335045} a^{19} - \frac{734243975729351}{8557499419867009} a^{13} + \frac{7282103864965656}{42787497099335045} a^{7} + \frac{3195150047441441}{8557499419867009} a$, $\frac{1}{42787497099335045} a^{32} + \frac{65876963448}{8557499419867009} a^{26} + \frac{12738486085268876}{42787497099335045} a^{20} - \frac{734243975729351}{8557499419867009} a^{14} + \frac{7282103864965656}{42787497099335045} a^{8} + \frac{3195150047441441}{8557499419867009} a^{2}$, $\frac{1}{42787497099335045} a^{33} + \frac{65876963448}{8557499419867009} a^{27} + \frac{12738486085268876}{42787497099335045} a^{21} - \frac{734243975729351}{8557499419867009} a^{15} + \frac{7282103864965656}{42787497099335045} a^{9} + \frac{3195150047441441}{8557499419867009} a^{3}$, $\frac{1}{42787497099335045} a^{34} + \frac{65876963448}{8557499419867009} a^{28} + \frac{12738486085268876}{42787497099335045} a^{22} - \frac{734243975729351}{8557499419867009} a^{16} + \frac{7282103864965656}{42787497099335045} a^{10} + \frac{3195150047441441}{8557499419867009} a^{4}$, $\frac{1}{42787497099335045} a^{35} + \frac{65876963448}{8557499419867009} a^{29} + \frac{12738486085268876}{42787497099335045} a^{23} - \frac{734243975729351}{8557499419867009} a^{17} + \frac{7282103864965656}{42787497099335045} a^{11} + \frac{3195150047441441}{8557499419867009} a^{5}$
Class group and class number
$C_{18}\times C_{126}$, which has order $2268$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{11719091329607067}{42787497099335045} a^{35} - \frac{4148558329423663284}{42787497099335045} a^{29} + \frac{1440827121264551214062}{42787497099335045} a^{23} - \frac{9827911095609216502334}{42787497099335045} a^{17} + \frac{65765278737197795431622}{42787497099335045} a^{11} - \frac{27762527351425588474}{42787497099335045} a^{5} \) (order $36$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 860633953627025.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |