Properties

Label 36.0.20639647523...2656.1
Degree $36$
Signature $[0, 18]$
Discriminant $2^{36}\cdot 19^{34}$
Root discriminant $32.27$
Ramified primes $2, 19$
Class number $19$ (GRH)
Class group $[19]$ (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^34 + x^32 - x^30 + x^28 - x^26 + x^24 - x^22 + x^20 - x^18 + x^16 - x^14 + x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1)
 
gp: K = bnfinit(x^36 - x^34 + x^32 - x^30 + x^28 - x^26 + x^24 - x^22 + x^20 - x^18 + x^16 - x^14 + x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{36} - x^{34} + x^{32} - x^{30} + x^{28} - x^{26} + x^{24} - x^{22} + x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2063964752380648518006363619171361060603216996551622656=2^{36}\cdot 19^{34}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(76=2^{2}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{76}(1,·)$, $\chi_{76}(3,·)$, $\chi_{76}(5,·)$, $\chi_{76}(7,·)$, $\chi_{76}(9,·)$, $\chi_{76}(11,·)$, $\chi_{76}(13,·)$, $\chi_{76}(15,·)$, $\chi_{76}(17,·)$, $\chi_{76}(21,·)$, $\chi_{76}(23,·)$, $\chi_{76}(25,·)$, $\chi_{76}(27,·)$, $\chi_{76}(29,·)$, $\chi_{76}(31,·)$, $\chi_{76}(33,·)$, $\chi_{76}(35,·)$, $\chi_{76}(37,·)$, $\chi_{76}(39,·)$, $\chi_{76}(41,·)$, $\chi_{76}(43,·)$, $\chi_{76}(45,·)$, $\chi_{76}(47,·)$, $\chi_{76}(49,·)$, $\chi_{76}(51,·)$, $\chi_{76}(53,·)$, $\chi_{76}(55,·)$, $\chi_{76}(59,·)$, $\chi_{76}(61,·)$, $\chi_{76}(63,·)$, $\chi_{76}(65,·)$, $\chi_{76}(67,·)$, $\chi_{76}(69,·)$, $\chi_{76}(71,·)$, $\chi_{76}(73,·)$, $\chi_{76}(75,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{19}$, which has order $19$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( a \) (order $76$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{4} + 1 \),  \( a^{8} + 1 \),  \( a^{28} - a^{14} + a^{4} \),  \( a^{8} + a^{4} + 1 \),  \( a^{22} + a^{6} \),  \( a^{28} - a^{18} + 1 \),  \( a^{22} - a^{20} + a^{2} - 1 \),  \( a^{18} - a^{16} \),  \( a - 1 \),  \( a^{3} - 1 \),  \( a^{9} - 1 \),  \( a^{11} - 1 \),  \( a^{5} - 1 \),  \( a^{31} + a^{16} \),  \( a^{7} - 1 \),  \( a^{13} - 1 \),  \( a^{17} - 1 \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2595333985839.583 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{19}) \), 3.3.361.1, \(\Q(i, \sqrt{19})\), 6.0.8340544.1, 6.0.2476099.1, 6.6.158470336.1, \(\Q(\zeta_{19})^+\), 12.0.25112847391952896.1, 18.0.75613185918270483380568064.1, \(\Q(\zeta_{19})\), \(\Q(\zeta_{76})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $18^{2}$ ${\href{/LocalNumberField/5.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ $18^{2}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ R $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ $18^{2}$ $18^{2}$ $18^{2}$ $18^{2}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
19Data not computed