Normalized defining polynomial
\( x^{36} + 111 x^{34} + 5661 x^{32} + 175824 x^{30} + 3716280 x^{28} + 56580363 x^{26} + 640635723 x^{24} + 5491163340 x^{22} + 35929249785 x^{20} + 179646248925 x^{18} + 682655745915 x^{16} + 1947717093240 x^{14} + 4090205895804 x^{12} + 6135308843706 x^{10} + 6287738877090 x^{8} + 4115610901368 x^{6} + 1543354088013 x^{4} + 272356603767 x^{2} + 14334558093 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{2187} a^{14}$, $\frac{1}{2187} a^{15}$, $\frac{1}{6561} a^{16}$, $\frac{1}{6561} a^{17}$, $\frac{1}{19683} a^{18}$, $\frac{1}{19683} a^{19}$, $\frac{1}{59049} a^{20}$, $\frac{1}{59049} a^{21}$, $\frac{1}{177147} a^{22}$, $\frac{1}{177147} a^{23}$, $\frac{1}{531441} a^{24}$, $\frac{1}{531441} a^{25}$, $\frac{1}{1594323} a^{26}$, $\frac{1}{1594323} a^{27}$, $\frac{1}{4782969} a^{28}$, $\frac{1}{4782969} a^{29}$, $\frac{1}{14348907} a^{30}$, $\frac{1}{14348907} a^{31}$, $\frac{1}{43046721} a^{32}$, $\frac{1}{43046721} a^{33}$, $\frac{1}{129140163} a^{34}$, $\frac{1}{129140163} a^{35}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.1369.1, 4.0.7294032.1, 6.6.69343957.1, 9.9.3512479453921.1, 12.0.531259171951520321851392.1, \(\Q(\zeta_{37})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $36$ | $18^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | $36$ | $36$ | $36$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{9}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{12}$ | $18^{2}$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||