Normalized defining polynomial
\( x^{36} - 304 x^{30} + 84160 x^{24} - 2508800 x^{18} + 68005888 x^{12} - 4227072 x^{6} + 262144 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{2289664} a^{24} - \frac{3}{5504} a^{18} + \frac{209}{35776} a^{12} - \frac{5}{344} a^{6} + \frac{274}{559}$, $\frac{1}{2289664} a^{25} - \frac{3}{5504} a^{19} + \frac{209}{35776} a^{13} - \frac{5}{344} a^{7} + \frac{274}{559} a$, $\frac{1}{4579328} a^{26} - \frac{3}{11008} a^{20} + \frac{209}{71552} a^{14} - \frac{5}{688} a^{8} + \frac{137}{559} a^{2}$, $\frac{1}{4579328} a^{27} - \frac{3}{11008} a^{21} + \frac{209}{71552} a^{15} - \frac{5}{688} a^{9} + \frac{137}{559} a^{3}$, $\frac{1}{9158656} a^{28} - \frac{3}{22016} a^{22} + \frac{209}{143104} a^{16} - \frac{5}{1376} a^{10} + \frac{137}{1118} a^{4}$, $\frac{1}{9158656} a^{29} - \frac{3}{22016} a^{23} + \frac{209}{143104} a^{17} - \frac{5}{1376} a^{11} + \frac{137}{1118} a^{5}$, $\frac{1}{399831073980416} a^{30} - \frac{7467523}{49978884247552} a^{24} - \frac{114384399}{6247360530944} a^{18} + \frac{2751769255}{390460033184} a^{12} + \frac{1127590751}{97615008296} a^{6} + \frac{5582733509}{12201876037}$, $\frac{1}{399831073980416} a^{31} - \frac{7467523}{49978884247552} a^{25} - \frac{114384399}{6247360530944} a^{19} + \frac{2751769255}{390460033184} a^{13} + \frac{1127590751}{97615008296} a^{7} + \frac{5582733509}{12201876037} a$, $\frac{1}{799662147960832} a^{32} - \frac{7467523}{99957768495104} a^{26} - \frac{114384399}{12494721061888} a^{20} + \frac{2751769255}{780920066368} a^{14} + \frac{1127590751}{195230016592} a^{8} + \frac{5582733509}{24403752074} a^{2}$, $\frac{1}{799662147960832} a^{33} - \frac{7467523}{99957768495104} a^{27} - \frac{114384399}{12494721061888} a^{21} + \frac{2751769255}{780920066368} a^{15} + \frac{1127590751}{195230016592} a^{9} + \frac{5582733509}{24403752074} a^{3}$, $\frac{1}{1599324295921664} a^{34} - \frac{7467523}{199915536990208} a^{28} - \frac{114384399}{24989442123776} a^{22} + \frac{2751769255}{1561840132736} a^{16} + \frac{1127590751}{390460033184} a^{10} + \frac{5582733509}{48807504148} a^{4}$, $\frac{1}{1599324295921664} a^{35} - \frac{7467523}{199915536990208} a^{29} - \frac{114384399}{24989442123776} a^{23} + \frac{2751769255}{1561840132736} a^{17} + \frac{1127590751}{390460033184} a^{11} + \frac{5582733509}{48807504148} a^{5}$
Class group and class number
$C_{18}\times C_{18}$, which has order $324$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1208369401}{799662147960832} a^{34} + \frac{45917889931}{99957768495104} a^{28} - \frac{3178001329435}{24989442123776} a^{22} + \frac{11841670194505}{3123680265472} a^{16} - \frac{40124985606547}{390460033184} a^{10} + \frac{7250193147}{1135058236} a^{4} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 445456911908259.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||