Normalized defining polynomial
\( x^{36} - 394 x^{30} + 118583 x^{24} - 14205984 x^{18} + 1297088703 x^{12} - 4312188797 x^{6} + 13841287201 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{7} + \frac{1}{7} a$, $\frac{1}{7} a^{14} - \frac{1}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{15} - \frac{1}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{16} - \frac{1}{7} a^{10} + \frac{1}{7} a^{4}$, $\frac{1}{7} a^{17} - \frac{1}{7} a^{11} + \frac{1}{7} a^{5}$, $\frac{1}{7} a^{18} - \frac{1}{7} a^{12} + \frac{1}{7} a^{6}$, $\frac{1}{7} a^{19} + \frac{1}{7} a$, $\frac{1}{7} a^{20} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{21} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{22} + \frac{1}{7} a^{4}$, $\frac{1}{7} a^{23} + \frac{1}{7} a^{5}$, $\frac{1}{189847} a^{24} - \frac{6796}{189847} a^{18} + \frac{64476}{189847} a^{12} + \frac{28030}{189847} a^{6} - \frac{3873}{27121}$, $\frac{1}{189847} a^{25} - \frac{6796}{189847} a^{19} + \frac{1462}{27121} a^{13} + \frac{82272}{189847} a^{7} - \frac{81353}{189847} a$, $\frac{1}{1328929} a^{26} - \frac{33917}{1328929} a^{20} + \frac{37355}{1328929} a^{14} - \frac{324543}{1328929} a^{8} + \frac{108494}{1328929} a^{2}$, $\frac{1}{9302503} a^{27} - \frac{413611}{9302503} a^{21} - \frac{532186}{9302503} a^{15} - \frac{2412860}{9302503} a^{9} + \frac{1817117}{9302503} a^{3}$, $\frac{1}{65117521} a^{28} - \frac{4400398}{65117521} a^{22} + \frac{3454601}{65117521} a^{16} + \frac{21507862}{65117521} a^{10} - \frac{7485386}{65117521} a^{4}$, $\frac{1}{455822647} a^{29} - \frac{13702901}{455822647} a^{23} - \frac{5847902}{455822647} a^{17} - \frac{34307156}{455822647} a^{11} - \frac{91207913}{455822647} a^{5}$, $\frac{1}{485357981256970509986599} a^{30} + \frac{248754877568597426}{485357981256970509986599} a^{24} - \frac{14218616539342088106811}{485357981256970509986599} a^{18} + \frac{236667550062985638885405}{485357981256970509986599} a^{12} + \frac{3687747521471003448410}{485357981256970509986599} a^{6} - \frac{1268818109576643066}{4125474770350538551}$, $\frac{1}{3397505868798793569906193} a^{31} + \frac{5361903689580064660}{3397505868798793569906193} a^{25} - \frac{187641284796335022282389}{3397505868798793569906193} a^{19} + \frac{5936720555130526841392}{91824482940507934321789} a^{13} - \frac{962380362722351592809082}{3397505868798793569906193} a^{7} - \frac{10698040117042783094}{28878323392453769857} a$, $\frac{1}{23782541081591554989343351} a^{32} + \frac{5361903689580064660}{23782541081591554989343351} a^{26} - \frac{672999266053305532268988}{23782541081591554989343351} a^{20} + \frac{32172287109561365219046}{642771380583555540252523} a^{14} + \frac{1464409543562500957123913}{23782541081591554989343351} a^{8} - \frac{938937906670320649}{28878323392453769857} a^{2}$, $\frac{1}{166477787571140884925403457} a^{33} + \frac{5361903689580064660}{166477787571140884925403457} a^{27} + \frac{2724506602745488037637205}{166477787571140884925403457} a^{21} + \frac{307645735931085168184413}{4499399664084888781767661} a^{15} + \frac{62619515181940785215435387}{166477787571140884925403457} a^{9} - \frac{10153144143232782288}{28878323392453769857} a^{3}$, $\frac{1}{1165344512997986194477824199} a^{34} + \frac{5361903689580064660}{1165344512997986194477824199} a^{28} + \frac{74072129847520153005667258}{1165344512997986194477824199} a^{22} + \frac{950417116514640708436936}{31495797648594221472373627} a^{16} + \frac{371792549242631000076898950}{1165344512997986194477824199} a^{10} + \frac{64105401723076911630}{202148263747176388999} a^{4}$, $\frac{1}{8157411590985903361344769393} a^{35} + \frac{5361903689580064660}{8157411590985903361344769393} a^{29} + \frac{573505492560942807781877629}{8157411590985903361344769393} a^{23} + \frac{14448616108769307053739919}{220470583540159550306615389} a^{17} - \frac{127640813470791654699311421}{8157411590985903361344769393} a^{11} - \frac{166921185416553247226}{1415037846230234722993} a^{5}$
Class group and class number
$C_{3}\times C_{12}\times C_{444}$, which has order $15984$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{745606568130638905}{8157411590985903361344769393} a^{35} - \frac{291275732977210271517}{8157411590985903361344769393} a^{29} + \frac{87473322363672887039805}{8157411590985903361344769393} a^{23} - \frac{10308275970137477235408725}{8157411590985903361344769393} a^{17} + \frac{934315988642476886763757963}{8157411590985903361344769393} a^{11} - \frac{56104081927926830}{4125474770350538551} a^{5} \) (order $36$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10470974244023312 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{36}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| $19$ | 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 19.6.4.3 | $x^{6} + 95 x^{3} + 2888$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |