Properties

Label 36.0.194...361.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.945\times 10^{62}$
Root discriminant \(53.73\)
Ramified primes $3,7,13$
Class number $21888$ (GRH)
Class group [2, 2, 2, 2, 2, 6, 114] (GRH)
Galois group $C_6^2$ (as 36T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 28*x^34 - 17*x^33 + 482*x^32 - 236*x^31 + 5049*x^30 - 1832*x^29 + 37992*x^28 - 12295*x^27 + 199953*x^26 - 58763*x^25 + 782564*x^24 - 233544*x^23 + 2165880*x^22 - 629685*x^21 + 4427149*x^20 - 1126928*x^19 + 6143602*x^18 - 998749*x^17 + 6093363*x^16 - 685062*x^15 + 4237386*x^14 - 223893*x^13 + 2109469*x^12 - 79641*x^11 + 708581*x^10 - 7791*x^9 + 162475*x^8 - 6767*x^7 + 22097*x^6 - 1065*x^5 + 2093*x^4 - 92*x^3 + 81*x^2 + 6*x + 1)
 
gp: K = bnfinit(y^36 - y^35 + 28*y^34 - 17*y^33 + 482*y^32 - 236*y^31 + 5049*y^30 - 1832*y^29 + 37992*y^28 - 12295*y^27 + 199953*y^26 - 58763*y^25 + 782564*y^24 - 233544*y^23 + 2165880*y^22 - 629685*y^21 + 4427149*y^20 - 1126928*y^19 + 6143602*y^18 - 998749*y^17 + 6093363*y^16 - 685062*y^15 + 4237386*y^14 - 223893*y^13 + 2109469*y^12 - 79641*y^11 + 708581*y^10 - 7791*y^9 + 162475*y^8 - 6767*y^7 + 22097*y^6 - 1065*y^5 + 2093*y^4 - 92*y^3 + 81*y^2 + 6*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - x^35 + 28*x^34 - 17*x^33 + 482*x^32 - 236*x^31 + 5049*x^30 - 1832*x^29 + 37992*x^28 - 12295*x^27 + 199953*x^26 - 58763*x^25 + 782564*x^24 - 233544*x^23 + 2165880*x^22 - 629685*x^21 + 4427149*x^20 - 1126928*x^19 + 6143602*x^18 - 998749*x^17 + 6093363*x^16 - 685062*x^15 + 4237386*x^14 - 223893*x^13 + 2109469*x^12 - 79641*x^11 + 708581*x^10 - 7791*x^9 + 162475*x^8 - 6767*x^7 + 22097*x^6 - 1065*x^5 + 2093*x^4 - 92*x^3 + 81*x^2 + 6*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 28*x^34 - 17*x^33 + 482*x^32 - 236*x^31 + 5049*x^30 - 1832*x^29 + 37992*x^28 - 12295*x^27 + 199953*x^26 - 58763*x^25 + 782564*x^24 - 233544*x^23 + 2165880*x^22 - 629685*x^21 + 4427149*x^20 - 1126928*x^19 + 6143602*x^18 - 998749*x^17 + 6093363*x^16 - 685062*x^15 + 4237386*x^14 - 223893*x^13 + 2109469*x^12 - 79641*x^11 + 708581*x^10 - 7791*x^9 + 162475*x^8 - 6767*x^7 + 22097*x^6 - 1065*x^5 + 2093*x^4 - 92*x^3 + 81*x^2 + 6*x + 1)
 

\( x^{36} - x^{35} + 28 x^{34} - 17 x^{33} + 482 x^{32} - 236 x^{31} + 5049 x^{30} - 1832 x^{29} + 37992 x^{28} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(194462611843897382024510486606832173718103280006113355559179361\) \(\medspace = 3^{18}\cdot 7^{24}\cdot 13^{30}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(53.73\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}7^{2/3}13^{5/6}\approx 53.73353932141756$
Ramified primes:   \(3\), \(7\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(273=3\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{273}(256,·)$, $\chi_{273}(1,·)$, $\chi_{273}(107,·)$, $\chi_{273}(4,·)$, $\chi_{273}(134,·)$, $\chi_{273}(263,·)$, $\chi_{273}(142,·)$, $\chi_{273}(16,·)$, $\chi_{273}(22,·)$, $\chi_{273}(23,·)$, $\chi_{273}(25,·)$, $\chi_{273}(155,·)$, $\chi_{273}(29,·)$, $\chi_{273}(170,·)$, $\chi_{273}(43,·)$, $\chi_{273}(172,·)$, $\chi_{273}(179,·)$, $\chi_{273}(53,·)$, $\chi_{273}(191,·)$, $\chi_{273}(64,·)$, $\chi_{273}(74,·)$, $\chi_{273}(205,·)$, $\chi_{273}(79,·)$, $\chi_{273}(211,·)$, $\chi_{273}(212,·)$, $\chi_{273}(88,·)$, $\chi_{273}(218,·)$, $\chi_{273}(92,·)$, $\chi_{273}(95,·)$, $\chi_{273}(100,·)$, $\chi_{273}(233,·)$, $\chi_{273}(235,·)$, $\chi_{273}(113,·)$, $\chi_{273}(116,·)$, $\chi_{273}(121,·)$, $\chi_{273}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{26}a^{30}+\frac{5}{13}a^{29}+\frac{1}{13}a^{28}+\frac{3}{26}a^{27}+\frac{6}{13}a^{26}-\frac{9}{26}a^{25}-\frac{1}{26}a^{24}-\frac{5}{13}a^{23}+\frac{5}{26}a^{22}-\frac{5}{13}a^{21}+\frac{7}{26}a^{20}-\frac{3}{13}a^{19}+\frac{2}{13}a^{18}-\frac{11}{26}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}+\frac{1}{26}a^{14}-\frac{5}{13}a^{13}+\frac{5}{13}a^{12}-\frac{3}{13}a^{11}-\frac{3}{13}a^{10}-\frac{2}{13}a^{9}-\frac{9}{26}a^{8}+\frac{1}{13}a^{7}+\frac{9}{26}a^{6}+\frac{4}{13}a^{5}-\frac{5}{13}a^{4}-\frac{2}{13}a^{3}-\frac{7}{26}a^{2}+\frac{1}{26}a+\frac{1}{26}$, $\frac{1}{338}a^{31}+\frac{3}{169}a^{30}-\frac{71}{169}a^{29}-\frac{5}{338}a^{28}+\frac{5}{13}a^{27}+\frac{47}{338}a^{26}+\frac{139}{338}a^{25}-\frac{55}{169}a^{24}+\frac{19}{338}a^{23}+\frac{11}{169}a^{22}+\frac{21}{338}a^{21}-\frac{4}{169}a^{20}-\frac{64}{169}a^{19}-\frac{53}{338}a^{18}+\frac{57}{338}a^{17}+\frac{7}{26}a^{16}+\frac{79}{338}a^{15}+\frac{45}{169}a^{14}-\frac{40}{169}a^{13}-\frac{23}{169}a^{12}+\frac{61}{169}a^{11}+\frac{36}{169}a^{10}+\frac{137}{338}a^{9}-\frac{46}{169}a^{8}-\frac{129}{338}a^{7}+\frac{25}{169}a^{6}-\frac{21}{169}a^{5}+\frac{57}{169}a^{4}+\frac{9}{338}a^{3}+\frac{159}{338}a^{2}+\frac{127}{338}a-\frac{41}{169}$, $\frac{1}{1014}a^{32}+\frac{2}{507}a^{30}-\frac{125}{338}a^{29}-\frac{76}{507}a^{28}+\frac{163}{338}a^{27}-\frac{25}{78}a^{26}+\frac{230}{507}a^{25}+\frac{53}{338}a^{24}+\frac{227}{507}a^{23}+\frac{41}{338}a^{22}-\frac{44}{169}a^{21}+\frac{30}{169}a^{20}+\frac{23}{78}a^{19}+\frac{89}{1014}a^{18}+\frac{113}{1014}a^{17}+\frac{209}{1014}a^{16}-\frac{64}{169}a^{15}+\frac{119}{507}a^{14}-\frac{62}{169}a^{13}+\frac{95}{507}a^{12}-\frac{200}{507}a^{11}-\frac{35}{1014}a^{10}+\frac{193}{507}a^{9}+\frac{475}{1014}a^{8}+\frac{29}{169}a^{7}+\frac{47}{169}a^{6}+\frac{235}{507}a^{5}+\frac{209}{1014}a^{4}-\frac{95}{338}a^{3}+\frac{265}{1014}a^{2}+\frac{176}{507}a-\frac{1}{507}$, $\frac{1}{6531097950}a^{33}+\frac{772948}{3265548975}a^{32}+\frac{3881383}{6531097950}a^{31}-\frac{115208611}{6531097950}a^{30}-\frac{537270337}{3265548975}a^{29}+\frac{609553177}{3265548975}a^{28}+\frac{2287386083}{6531097950}a^{27}+\frac{261073193}{6531097950}a^{26}+\frac{152870219}{653109795}a^{25}-\frac{37178170}{130621959}a^{24}-\frac{732070358}{3265548975}a^{23}+\frac{37943723}{217703265}a^{22}+\frac{507030877}{2177032650}a^{21}-\frac{163707649}{6531097950}a^{20}+\frac{70280971}{435406530}a^{19}-\frac{6312412}{43540653}a^{18}+\frac{82338747}{362838775}a^{17}-\frac{1964990111}{6531097950}a^{16}-\frac{2128234337}{6531097950}a^{15}+\frac{1022181778}{3265548975}a^{14}+\frac{47734016}{3265548975}a^{13}+\frac{592759463}{3265548975}a^{12}-\frac{1653782629}{6531097950}a^{11}+\frac{722484713}{3265548975}a^{10}-\frac{1326206027}{3265548975}a^{9}-\frac{1373572172}{3265548975}a^{8}+\frac{290330327}{725677550}a^{7}-\frac{67070842}{653109795}a^{6}-\frac{513626393}{2177032650}a^{5}-\frac{2943653579}{6531097950}a^{4}-\frac{109265203}{251196075}a^{3}-\frac{67640537}{2177032650}a^{2}+\frac{200131213}{2177032650}a-\frac{162037919}{3265548975}$, $\frac{1}{45\!\cdots\!50}a^{34}-\frac{14810111393447}{45\!\cdots\!50}a^{33}+\frac{17\!\cdots\!31}{90\!\cdots\!10}a^{32}+\frac{38\!\cdots\!72}{45\!\cdots\!05}a^{31}-\frac{10\!\cdots\!13}{22\!\cdots\!25}a^{30}-\frac{12\!\cdots\!57}{22\!\cdots\!25}a^{29}+\frac{62\!\cdots\!87}{15\!\cdots\!50}a^{28}+\frac{58\!\cdots\!33}{15\!\cdots\!50}a^{27}-\frac{32\!\cdots\!53}{15\!\cdots\!50}a^{26}+\frac{20\!\cdots\!41}{90\!\cdots\!10}a^{25}+\frac{44\!\cdots\!09}{45\!\cdots\!50}a^{24}+\frac{49\!\cdots\!89}{22\!\cdots\!25}a^{23}+\frac{16\!\cdots\!81}{75\!\cdots\!75}a^{22}+\frac{72\!\cdots\!18}{17\!\cdots\!25}a^{21}-\frac{14\!\cdots\!53}{45\!\cdots\!50}a^{20}-\frac{69\!\cdots\!19}{89\!\cdots\!10}a^{19}+\frac{29\!\cdots\!66}{75\!\cdots\!75}a^{18}-\frac{86\!\cdots\!57}{22\!\cdots\!25}a^{17}-\frac{22\!\cdots\!71}{50\!\cdots\!50}a^{16}+\frac{58\!\cdots\!11}{22\!\cdots\!25}a^{15}+\frac{77\!\cdots\!49}{45\!\cdots\!50}a^{14}-\frac{79\!\cdots\!65}{30\!\cdots\!47}a^{13}+\frac{10\!\cdots\!03}{45\!\cdots\!50}a^{12}+\frac{20\!\cdots\!73}{45\!\cdots\!50}a^{11}-\frac{94\!\cdots\!61}{22\!\cdots\!25}a^{10}+\frac{26\!\cdots\!82}{83\!\cdots\!75}a^{9}-\frac{33\!\cdots\!78}{34\!\cdots\!85}a^{8}-\frac{91\!\cdots\!69}{45\!\cdots\!50}a^{7}-\frac{76\!\cdots\!72}{22\!\cdots\!25}a^{6}-\frac{66\!\cdots\!41}{22\!\cdots\!25}a^{5}+\frac{43\!\cdots\!73}{15\!\cdots\!50}a^{4}+\frac{16\!\cdots\!11}{34\!\cdots\!50}a^{3}+\frac{51\!\cdots\!79}{15\!\cdots\!50}a^{2}-\frac{10\!\cdots\!79}{45\!\cdots\!05}a+\frac{21\!\cdots\!09}{45\!\cdots\!50}$, $\frac{1}{26\!\cdots\!50}a^{35}-\frac{48\!\cdots\!78}{10\!\cdots\!75}a^{34}-\frac{49\!\cdots\!26}{10\!\cdots\!75}a^{33}+\frac{21\!\cdots\!46}{13\!\cdots\!75}a^{32}+\frac{10\!\cdots\!41}{10\!\cdots\!42}a^{31}-\frac{67\!\cdots\!09}{26\!\cdots\!55}a^{30}+\frac{31\!\cdots\!72}{43\!\cdots\!25}a^{29}+\frac{42\!\cdots\!27}{87\!\cdots\!50}a^{28}+\frac{21\!\cdots\!09}{97\!\cdots\!50}a^{27}+\frac{24\!\cdots\!82}{52\!\cdots\!71}a^{26}-\frac{31\!\cdots\!91}{26\!\cdots\!50}a^{25}-\frac{59\!\cdots\!63}{13\!\cdots\!75}a^{24}-\frac{31\!\cdots\!83}{87\!\cdots\!50}a^{23}+\frac{38\!\cdots\!61}{77\!\cdots\!50}a^{22}-\frac{51\!\cdots\!82}{13\!\cdots\!75}a^{21}+\frac{44\!\cdots\!83}{97\!\cdots\!65}a^{20}-\frac{18\!\cdots\!59}{43\!\cdots\!25}a^{19}+\frac{11\!\cdots\!56}{26\!\cdots\!55}a^{18}+\frac{11\!\cdots\!83}{29\!\cdots\!50}a^{17}-\frac{99\!\cdots\!77}{20\!\cdots\!50}a^{16}-\frac{38\!\cdots\!51}{13\!\cdots\!75}a^{15}+\frac{16\!\cdots\!27}{67\!\cdots\!50}a^{14}+\frac{10\!\cdots\!37}{26\!\cdots\!50}a^{13}-\frac{65\!\cdots\!79}{13\!\cdots\!75}a^{12}+\frac{29\!\cdots\!67}{26\!\cdots\!50}a^{11}-\frac{25\!\cdots\!51}{87\!\cdots\!50}a^{10}-\frac{45\!\cdots\!81}{26\!\cdots\!50}a^{9}+\frac{61\!\cdots\!09}{13\!\cdots\!75}a^{8}+\frac{36\!\cdots\!18}{13\!\cdots\!75}a^{7}+\frac{49\!\cdots\!46}{13\!\cdots\!75}a^{6}-\frac{19\!\cdots\!79}{87\!\cdots\!50}a^{5}-\frac{96\!\cdots\!19}{26\!\cdots\!50}a^{4}-\frac{14\!\cdots\!47}{43\!\cdots\!25}a^{3}-\frac{12\!\cdots\!69}{26\!\cdots\!50}a^{2}-\frac{64\!\cdots\!04}{13\!\cdots\!75}a+\frac{94\!\cdots\!31}{17\!\cdots\!70}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{6}\times C_{114}$, which has order $21888$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{56903885588240738313226097213682322763623512441922757}{485851798891454577438471572140111742998088472216820275} a^{35} + \frac{8399574653656639993341457829875776633419277213140347}{64780239852193943658462876285348232399745129628909370} a^{34} - \frac{8307579821660499492481420844950297229797827650601331771}{2526429354235563802680052175128581063590060055527465430} a^{33} + \frac{29535133854701254238684462800802705827595662576356439577}{12632146771177819013400260875642905317950300277637327150} a^{32} - \frac{54962131201469251875554864942283228276411215493400020269}{971703597782909154876943144280223485996176944433640550} a^{31} + \frac{84915776966215102935837239328650467195019934593574080599}{2526429354235563802680052175128581063590060055527465430} a^{30} - \frac{1247494734353817184124591100169563400878317141610588683539}{2105357795196303168900043479273817552991716712939554525} a^{29} + \frac{1748377949645077667012502849356024536746211067661086717258}{6316073385588909506700130437821452658975150138818663575} a^{28} - \frac{28132500502769752782299612962005473749818341542845009710911}{6316073385588909506700130437821452658975150138818663575} a^{27} + \frac{12048738765337851244956334979750971526985054851101445609131}{6316073385588909506700130437821452658975150138818663575} a^{26} - \frac{296019664952231608926113578709483205295323812638620108517003}{12632146771177819013400260875642905317950300277637327150} a^{25} + \frac{58923757390839793421756144561881268946232766738327064310414}{6316073385588909506700130437821452658975150138818663575} a^{24} - \frac{1157886193820950338898124868059307623087483140114807132389421}{12632146771177819013400260875642905317950300277637327150} a^{23} + \frac{18630219293244980777622844378060188747421367417544559123471}{505285870847112760536010435025716212718012011105493086} a^{22} - \frac{3205443330053454142656594821581737871784407271211333911467949}{12632146771177819013400260875642905317950300277637327150} a^{21} + \frac{630002155127189066205418313408162537217324846722180759826502}{6316073385588909506700130437821452658975150138818663575} a^{20} - \frac{2183544596298436976643587928366978063246307269255421284074379}{4210715590392606337800086958547635105983433425879109050} a^{19} + \frac{2329146229840703248926793349329630782826039704755508063067829}{12632146771177819013400260875642905317950300277637327150} a^{18} - \frac{4533366693906838971575013411962785700121388373486158049231572}{6316073385588909506700130437821452658975150138818663575} a^{17} + \frac{95150286524849098115304553892886057338526534022639742776759}{505285870847112760536010435025716212718012011105493086} a^{16} - \frac{889796511397595956208659063217153755260974709134658682350584}{1263214677117781901340026087564290531795030027763732715} a^{15} + \frac{317877060425574773048683371231835887643791763505489827062891}{2105357795196303168900043479273817552991716712939554525} a^{14} - \frac{3055701769479956934563205351949575982508957771258650165845796}{6316073385588909506700130437821452658975150138818663575} a^{13} + \frac{946618854386771546398945287073003777312849405326952464081469}{12632146771177819013400260875642905317950300277637327150} a^{12} - \frac{2977025581971955036161041203487875086605132230666915038206581}{12632146771177819013400260875642905317950300277637327150} a^{11} + \frac{71062135766522708662799705277596730492684224421330524765964}{2105357795196303168900043479273817552991716712939554525} a^{10} - \frac{13010345798417512263527026888238785015707156083118114548951}{168428623615704253512003478341905404239337337035164362} a^{9} + \frac{1505157710338971136524531991255952624565799278944742195013}{168428623615704253512003478341905404239337337035164362} a^{8} - \frac{21470541214027762000222287462812238662719500733343895326738}{1263214677117781901340026087564290531795030027763732715} a^{7} + \frac{103195280466650188364172023779636547783216044784210906467}{38868143911316366195077725771208939439847077777345622} a^{6} - \frac{14070398330403435260745224442513473063708698558455707102149}{6316073385588909506700130437821452658975150138818663575} a^{5} + \frac{293911682431215619839797480080302578815177685949744407353}{842143118078521267560017391709527021196686685175821810} a^{4} - \frac{1293510461326664053046808715537946242260593755549993505776}{6316073385588909506700130437821452658975150138818663575} a^{3} + \frac{90988776481785739773627819420603809535646445677710576299}{2526429354235563802680052175128581063590060055527465430} a^{2} - \frac{7775942081431236721494747286178258347552111617620949452}{1263214677117781901340026087564290531795030027763732715} a + \frac{3992065153836352835578097879007859510864316196161170369}{6316073385588909506700130437821452658975150138818663575} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{79\!\cdots\!86}{33\!\cdots\!25}a^{35}-\frac{36\!\cdots\!26}{11\!\cdots\!75}a^{34}+\frac{58\!\cdots\!11}{87\!\cdots\!50}a^{33}-\frac{55\!\cdots\!91}{87\!\cdots\!50}a^{32}+\frac{76\!\cdots\!37}{67\!\cdots\!50}a^{31}-\frac{42\!\cdots\!11}{43\!\cdots\!25}a^{30}+\frac{34\!\cdots\!63}{29\!\cdots\!50}a^{29}-\frac{37\!\cdots\!63}{43\!\cdots\!25}a^{28}+\frac{77\!\cdots\!99}{87\!\cdots\!50}a^{27}-\frac{26\!\cdots\!72}{43\!\cdots\!25}a^{26}+\frac{40\!\cdots\!29}{87\!\cdots\!50}a^{25}-\frac{13\!\cdots\!58}{43\!\cdots\!25}a^{24}+\frac{78\!\cdots\!32}{43\!\cdots\!25}a^{23}-\frac{52\!\cdots\!69}{43\!\cdots\!25}a^{22}+\frac{43\!\cdots\!03}{87\!\cdots\!50}a^{21}-\frac{14\!\cdots\!99}{43\!\cdots\!25}a^{20}+\frac{48\!\cdots\!02}{48\!\cdots\!25}a^{19}-\frac{11\!\cdots\!97}{17\!\cdots\!70}a^{18}+\frac{59\!\cdots\!22}{43\!\cdots\!25}a^{17}-\frac{65\!\cdots\!33}{87\!\cdots\!50}a^{16}+\frac{55\!\cdots\!02}{43\!\cdots\!25}a^{15}-\frac{13\!\cdots\!79}{19\!\cdots\!30}a^{14}+\frac{34\!\cdots\!53}{43\!\cdots\!25}a^{13}-\frac{18\!\cdots\!58}{43\!\cdots\!25}a^{12}+\frac{29\!\cdots\!99}{87\!\cdots\!50}a^{11}-\frac{21\!\cdots\!29}{97\!\cdots\!50}a^{10}+\frac{12\!\cdots\!41}{14\!\cdots\!75}a^{9}-\frac{20\!\cdots\!92}{29\!\cdots\!95}a^{8}+\frac{97\!\cdots\!77}{87\!\cdots\!50}a^{7}-\frac{12\!\cdots\!21}{67\!\cdots\!50}a^{6}-\frac{36\!\cdots\!89}{17\!\cdots\!70}a^{5}-\frac{32\!\cdots\!07}{14\!\cdots\!75}a^{4}-\frac{13\!\cdots\!33}{87\!\cdots\!50}a^{3}-\frac{13\!\cdots\!01}{87\!\cdots\!50}a^{2}-\frac{15\!\cdots\!19}{87\!\cdots\!85}a-\frac{18\!\cdots\!81}{87\!\cdots\!50}$, $\frac{34\!\cdots\!49}{21\!\cdots\!25}a^{35}-\frac{39\!\cdots\!59}{20\!\cdots\!50}a^{34}+\frac{58\!\cdots\!93}{13\!\cdots\!75}a^{33}-\frac{48\!\cdots\!26}{13\!\cdots\!75}a^{32}+\frac{30\!\cdots\!11}{40\!\cdots\!70}a^{31}-\frac{14\!\cdots\!11}{26\!\cdots\!55}a^{30}+\frac{20\!\cdots\!53}{26\!\cdots\!50}a^{29}-\frac{41\!\cdots\!37}{87\!\cdots\!50}a^{28}+\frac{25\!\cdots\!57}{43\!\cdots\!25}a^{27}-\frac{58\!\cdots\!11}{17\!\cdots\!70}a^{26}+\frac{39\!\cdots\!68}{13\!\cdots\!75}a^{25}-\frac{43\!\cdots\!99}{26\!\cdots\!50}a^{24}+\frac{15\!\cdots\!42}{13\!\cdots\!75}a^{23}-\frac{31\!\cdots\!63}{48\!\cdots\!25}a^{22}+\frac{82\!\cdots\!59}{26\!\cdots\!50}a^{21}-\frac{92\!\cdots\!53}{52\!\cdots\!10}a^{20}+\frac{54\!\cdots\!03}{87\!\cdots\!50}a^{19}-\frac{63\!\cdots\!89}{19\!\cdots\!30}a^{18}+\frac{10\!\cdots\!44}{13\!\cdots\!75}a^{17}-\frac{15\!\cdots\!69}{43\!\cdots\!25}a^{16}+\frac{94\!\cdots\!61}{13\!\cdots\!75}a^{15}-\frac{42\!\cdots\!39}{13\!\cdots\!75}a^{14}+\frac{18\!\cdots\!93}{43\!\cdots\!25}a^{13}-\frac{51\!\cdots\!17}{26\!\cdots\!50}a^{12}+\frac{20\!\cdots\!04}{13\!\cdots\!75}a^{11}-\frac{27\!\cdots\!97}{26\!\cdots\!50}a^{10}+\frac{11\!\cdots\!36}{43\!\cdots\!25}a^{9}-\frac{45\!\cdots\!74}{13\!\cdots\!75}a^{8}-\frac{18\!\cdots\!23}{13\!\cdots\!75}a^{7}-\frac{20\!\cdots\!99}{20\!\cdots\!50}a^{6}-\frac{47\!\cdots\!83}{26\!\cdots\!50}a^{5}-\frac{11\!\cdots\!97}{87\!\cdots\!50}a^{4}-\frac{18\!\cdots\!79}{13\!\cdots\!75}a^{3}-\frac{39\!\cdots\!11}{43\!\cdots\!25}a^{2}-\frac{20\!\cdots\!06}{13\!\cdots\!75}a-\frac{88\!\cdots\!14}{52\!\cdots\!71}$, $\frac{20\!\cdots\!33}{26\!\cdots\!50}a^{35}-\frac{17\!\cdots\!46}{26\!\cdots\!55}a^{34}+\frac{19\!\cdots\!79}{87\!\cdots\!85}a^{33}-\frac{47\!\cdots\!22}{48\!\cdots\!25}a^{32}+\frac{16\!\cdots\!28}{43\!\cdots\!25}a^{31}-\frac{21\!\cdots\!97}{17\!\cdots\!70}a^{30}+\frac{51\!\cdots\!73}{13\!\cdots\!75}a^{29}-\frac{90\!\cdots\!56}{11\!\cdots\!75}a^{28}+\frac{43\!\cdots\!76}{14\!\cdots\!75}a^{27}-\frac{13\!\cdots\!03}{26\!\cdots\!50}a^{26}+\frac{13\!\cdots\!19}{87\!\cdots\!50}a^{25}-\frac{56\!\cdots\!57}{26\!\cdots\!50}a^{24}+\frac{79\!\cdots\!62}{13\!\cdots\!75}a^{23}-\frac{46\!\cdots\!83}{52\!\cdots\!71}a^{22}+\frac{11\!\cdots\!79}{67\!\cdots\!50}a^{21}-\frac{61\!\cdots\!51}{26\!\cdots\!50}a^{20}+\frac{14\!\cdots\!13}{43\!\cdots\!25}a^{19}-\frac{94\!\cdots\!51}{26\!\cdots\!50}a^{18}+\frac{12\!\cdots\!11}{26\!\cdots\!50}a^{17}-\frac{79\!\cdots\!55}{10\!\cdots\!42}a^{16}+\frac{39\!\cdots\!22}{87\!\cdots\!85}a^{15}+\frac{16\!\cdots\!63}{13\!\cdots\!75}a^{14}+\frac{80\!\cdots\!73}{26\!\cdots\!50}a^{13}+\frac{10\!\cdots\!69}{43\!\cdots\!25}a^{12}+\frac{13\!\cdots\!63}{87\!\cdots\!50}a^{11}+\frac{31\!\cdots\!29}{26\!\cdots\!50}a^{10}+\frac{25\!\cdots\!60}{52\!\cdots\!71}a^{9}+\frac{14\!\cdots\!39}{35\!\cdots\!14}a^{8}+\frac{17\!\cdots\!83}{17\!\cdots\!70}a^{7}+\frac{16\!\cdots\!05}{10\!\cdots\!42}a^{6}+\frac{26\!\cdots\!87}{26\!\cdots\!50}a^{5}-\frac{38\!\cdots\!61}{52\!\cdots\!10}a^{4}+\frac{19\!\cdots\!13}{26\!\cdots\!50}a^{3}-\frac{28\!\cdots\!31}{52\!\cdots\!10}a^{2}+\frac{24\!\cdots\!01}{87\!\cdots\!85}a-\frac{18\!\cdots\!61}{13\!\cdots\!75}$, $\frac{66\!\cdots\!61}{20\!\cdots\!50}a^{35}-\frac{41\!\cdots\!69}{40\!\cdots\!70}a^{34}+\frac{18\!\cdots\!64}{20\!\cdots\!35}a^{33}+\frac{13\!\cdots\!29}{20\!\cdots\!50}a^{32}+\frac{31\!\cdots\!31}{20\!\cdots\!50}a^{31}+\frac{12\!\cdots\!83}{40\!\cdots\!70}a^{30}+\frac{54\!\cdots\!72}{33\!\cdots\!25}a^{29}+\frac{90\!\cdots\!21}{17\!\cdots\!50}a^{28}+\frac{82\!\cdots\!77}{67\!\cdots\!50}a^{27}+\frac{88\!\cdots\!99}{20\!\cdots\!50}a^{26}+\frac{13\!\cdots\!69}{20\!\cdots\!50}a^{25}+\frac{38\!\cdots\!87}{15\!\cdots\!50}a^{24}+\frac{85\!\cdots\!18}{33\!\cdots\!25}a^{23}+\frac{77\!\cdots\!29}{80\!\cdots\!34}a^{22}+\frac{70\!\cdots\!26}{10\!\cdots\!75}a^{21}+\frac{29\!\cdots\!06}{11\!\cdots\!75}a^{20}+\frac{47\!\cdots\!71}{33\!\cdots\!25}a^{19}+\frac{11\!\cdots\!83}{20\!\cdots\!50}a^{18}+\frac{66\!\cdots\!52}{33\!\cdots\!25}a^{17}+\frac{39\!\cdots\!65}{40\!\cdots\!67}a^{16}+\frac{41\!\cdots\!47}{20\!\cdots\!35}a^{15}+\frac{35\!\cdots\!57}{33\!\cdots\!25}a^{14}+\frac{30\!\cdots\!91}{20\!\cdots\!50}a^{13}+\frac{16\!\cdots\!63}{20\!\cdots\!50}a^{12}+\frac{16\!\cdots\!63}{20\!\cdots\!50}a^{11}+\frac{90\!\cdots\!77}{22\!\cdots\!50}a^{10}+\frac{11\!\cdots\!75}{40\!\cdots\!67}a^{9}+\frac{54\!\cdots\!91}{40\!\cdots\!67}a^{8}+\frac{28\!\cdots\!63}{40\!\cdots\!70}a^{7}+\frac{10\!\cdots\!76}{40\!\cdots\!67}a^{6}+\frac{28\!\cdots\!34}{33\!\cdots\!25}a^{5}+\frac{99\!\cdots\!23}{40\!\cdots\!70}a^{4}+\frac{17\!\cdots\!41}{33\!\cdots\!25}a^{3}+\frac{33\!\cdots\!04}{20\!\cdots\!35}a^{2}+\frac{32\!\cdots\!61}{20\!\cdots\!35}a-\frac{40\!\cdots\!79}{33\!\cdots\!25}$, $\frac{26\!\cdots\!48}{43\!\cdots\!25}a^{35}-\frac{13\!\cdots\!31}{19\!\cdots\!30}a^{34}+\frac{29\!\cdots\!03}{17\!\cdots\!70}a^{33}-\frac{11\!\cdots\!31}{87\!\cdots\!50}a^{32}+\frac{12\!\cdots\!83}{43\!\cdots\!25}a^{31}-\frac{31\!\cdots\!57}{17\!\cdots\!70}a^{30}+\frac{44\!\cdots\!17}{14\!\cdots\!75}a^{29}-\frac{13\!\cdots\!73}{87\!\cdots\!50}a^{28}+\frac{99\!\cdots\!33}{43\!\cdots\!25}a^{27}-\frac{92\!\cdots\!61}{87\!\cdots\!50}a^{26}+\frac{51\!\cdots\!67}{43\!\cdots\!25}a^{25}-\frac{22\!\cdots\!67}{43\!\cdots\!25}a^{24}+\frac{20\!\cdots\!94}{43\!\cdots\!25}a^{23}-\frac{72\!\cdots\!77}{35\!\cdots\!14}a^{22}+\frac{55\!\cdots\!11}{43\!\cdots\!25}a^{21}-\frac{24\!\cdots\!81}{43\!\cdots\!25}a^{20}+\frac{25\!\cdots\!79}{97\!\cdots\!50}a^{19}-\frac{45\!\cdots\!06}{43\!\cdots\!25}a^{18}+\frac{30\!\cdots\!57}{87\!\cdots\!50}a^{17}-\frac{19\!\cdots\!43}{17\!\cdots\!57}a^{16}+\frac{59\!\cdots\!99}{17\!\cdots\!70}a^{15}-\frac{13\!\cdots\!98}{14\!\cdots\!75}a^{14}+\frac{98\!\cdots\!13}{43\!\cdots\!25}a^{13}-\frac{43\!\cdots\!57}{87\!\cdots\!50}a^{12}+\frac{91\!\cdots\!93}{87\!\cdots\!50}a^{11}-\frac{34\!\cdots\!67}{14\!\cdots\!75}a^{10}+\frac{18\!\cdots\!35}{58\!\cdots\!19}a^{9}-\frac{82\!\cdots\!41}{11\!\cdots\!38}a^{8}+\frac{11\!\cdots\!13}{17\!\cdots\!70}a^{7}-\frac{71\!\cdots\!85}{35\!\cdots\!14}a^{6}+\frac{29\!\cdots\!22}{43\!\cdots\!25}a^{5}-\frac{15\!\cdots\!59}{58\!\cdots\!90}a^{4}+\frac{55\!\cdots\!81}{87\!\cdots\!50}a^{3}-\frac{18\!\cdots\!96}{87\!\cdots\!85}a^{2}+\frac{12\!\cdots\!87}{17\!\cdots\!70}a-\frac{14\!\cdots\!07}{43\!\cdots\!25}$, $\frac{47\!\cdots\!99}{15\!\cdots\!50}a^{35}-\frac{37\!\cdots\!63}{40\!\cdots\!70}a^{34}+\frac{17\!\cdots\!08}{20\!\cdots\!35}a^{33}+\frac{15\!\cdots\!93}{20\!\cdots\!50}a^{32}+\frac{14\!\cdots\!01}{10\!\cdots\!75}a^{31}+\frac{61\!\cdots\!53}{20\!\cdots\!35}a^{30}+\frac{51\!\cdots\!49}{33\!\cdots\!25}a^{29}+\frac{17\!\cdots\!49}{33\!\cdots\!25}a^{28}+\frac{38\!\cdots\!92}{33\!\cdots\!25}a^{27}+\frac{43\!\cdots\!54}{10\!\cdots\!75}a^{26}+\frac{94\!\cdots\!21}{15\!\cdots\!50}a^{25}+\frac{24\!\cdots\!51}{10\!\cdots\!75}a^{24}+\frac{53\!\cdots\!79}{22\!\cdots\!50}a^{23}+\frac{28\!\cdots\!34}{31\!\cdots\!59}a^{22}+\frac{13\!\cdots\!09}{20\!\cdots\!50}a^{21}+\frac{17\!\cdots\!87}{67\!\cdots\!50}a^{20}+\frac{44\!\cdots\!82}{33\!\cdots\!25}a^{19}+\frac{56\!\cdots\!43}{10\!\cdots\!75}a^{18}+\frac{47\!\cdots\!43}{25\!\cdots\!25}a^{17}+\frac{37\!\cdots\!99}{40\!\cdots\!67}a^{16}+\frac{38\!\cdots\!04}{20\!\cdots\!35}a^{15}+\frac{68\!\cdots\!13}{67\!\cdots\!50}a^{14}+\frac{28\!\cdots\!47}{20\!\cdots\!50}a^{13}+\frac{15\!\cdots\!21}{20\!\cdots\!50}a^{12}+\frac{15\!\cdots\!71}{20\!\cdots\!50}a^{11}+\frac{25\!\cdots\!77}{67\!\cdots\!50}a^{10}+\frac{21\!\cdots\!91}{80\!\cdots\!34}a^{9}+\frac{10\!\cdots\!89}{80\!\cdots\!34}a^{8}+\frac{13\!\cdots\!73}{20\!\cdots\!35}a^{7}+\frac{20\!\cdots\!07}{80\!\cdots\!34}a^{6}+\frac{26\!\cdots\!03}{33\!\cdots\!25}a^{5}+\frac{94\!\cdots\!81}{40\!\cdots\!70}a^{4}+\frac{10\!\cdots\!23}{22\!\cdots\!50}a^{3}+\frac{32\!\cdots\!33}{20\!\cdots\!35}a^{2}+\frac{23\!\cdots\!59}{15\!\cdots\!95}a-\frac{47\!\cdots\!11}{67\!\cdots\!50}$, $\frac{28\!\cdots\!81}{87\!\cdots\!50}a^{35}-\frac{10\!\cdots\!21}{26\!\cdots\!55}a^{34}+\frac{47\!\cdots\!89}{52\!\cdots\!10}a^{33}-\frac{14\!\cdots\!21}{20\!\cdots\!50}a^{32}+\frac{20\!\cdots\!64}{13\!\cdots\!75}a^{31}-\frac{22\!\cdots\!01}{20\!\cdots\!35}a^{30}+\frac{42\!\cdots\!91}{26\!\cdots\!50}a^{29}-\frac{82\!\cdots\!53}{87\!\cdots\!50}a^{28}+\frac{53\!\cdots\!38}{43\!\cdots\!25}a^{27}-\frac{28\!\cdots\!73}{43\!\cdots\!25}a^{26}+\frac{83\!\cdots\!36}{13\!\cdots\!75}a^{25}-\frac{43\!\cdots\!11}{13\!\cdots\!75}a^{24}+\frac{65\!\cdots\!79}{26\!\cdots\!50}a^{23}-\frac{50\!\cdots\!79}{38\!\cdots\!46}a^{22}+\frac{18\!\cdots\!51}{26\!\cdots\!50}a^{21}-\frac{46\!\cdots\!73}{13\!\cdots\!75}a^{20}+\frac{60\!\cdots\!48}{43\!\cdots\!25}a^{19}-\frac{64\!\cdots\!73}{97\!\cdots\!50}a^{18}+\frac{38\!\cdots\!87}{20\!\cdots\!50}a^{17}-\frac{13\!\cdots\!50}{17\!\cdots\!57}a^{16}+\frac{47\!\cdots\!41}{26\!\cdots\!55}a^{15}-\frac{86\!\cdots\!02}{13\!\cdots\!75}a^{14}+\frac{10\!\cdots\!11}{87\!\cdots\!50}a^{13}-\frac{51\!\cdots\!28}{13\!\cdots\!75}a^{12}+\frac{72\!\cdots\!97}{13\!\cdots\!75}a^{11}-\frac{19\!\cdots\!41}{10\!\cdots\!75}a^{10}+\frac{57\!\cdots\!21}{35\!\cdots\!14}a^{9}-\frac{32\!\cdots\!50}{52\!\cdots\!71}a^{8}+\frac{15\!\cdots\!09}{52\!\cdots\!10}a^{7}-\frac{17\!\cdots\!67}{10\!\cdots\!42}a^{6}+\frac{34\!\cdots\!51}{13\!\cdots\!75}a^{5}-\frac{35\!\cdots\!57}{17\!\cdots\!70}a^{4}+\frac{67\!\cdots\!73}{26\!\cdots\!50}a^{3}-\frac{12\!\cdots\!06}{87\!\cdots\!85}a^{2}-\frac{11\!\cdots\!52}{26\!\cdots\!55}a-\frac{13\!\cdots\!81}{13\!\cdots\!75}$, $\frac{13\!\cdots\!39}{20\!\cdots\!50}a^{35}-\frac{32\!\cdots\!71}{40\!\cdots\!70}a^{34}+\frac{49\!\cdots\!53}{26\!\cdots\!55}a^{33}-\frac{39\!\cdots\!77}{26\!\cdots\!50}a^{32}+\frac{65\!\cdots\!19}{20\!\cdots\!50}a^{31}-\frac{11\!\cdots\!09}{52\!\cdots\!10}a^{30}+\frac{14\!\cdots\!64}{43\!\cdots\!25}a^{29}-\frac{17\!\cdots\!83}{97\!\cdots\!50}a^{28}+\frac{22\!\cdots\!49}{87\!\cdots\!50}a^{27}-\frac{33\!\cdots\!37}{26\!\cdots\!50}a^{26}+\frac{34\!\cdots\!03}{26\!\cdots\!50}a^{25}-\frac{16\!\cdots\!53}{26\!\cdots\!50}a^{24}+\frac{22\!\cdots\!16}{43\!\cdots\!25}a^{23}-\frac{26\!\cdots\!85}{10\!\cdots\!42}a^{22}+\frac{18\!\cdots\!87}{13\!\cdots\!75}a^{21}-\frac{97\!\cdots\!53}{14\!\cdots\!75}a^{20}+\frac{12\!\cdots\!52}{43\!\cdots\!25}a^{19}-\frac{32\!\cdots\!79}{26\!\cdots\!50}a^{18}+\frac{17\!\cdots\!74}{43\!\cdots\!25}a^{17}-\frac{68\!\cdots\!46}{52\!\cdots\!71}a^{16}+\frac{10\!\cdots\!84}{26\!\cdots\!55}a^{15}-\frac{47\!\cdots\!91}{43\!\cdots\!25}a^{14}+\frac{68\!\cdots\!17}{26\!\cdots\!50}a^{13}-\frac{14\!\cdots\!19}{26\!\cdots\!50}a^{12}+\frac{32\!\cdots\!31}{26\!\cdots\!50}a^{11}-\frac{69\!\cdots\!01}{29\!\cdots\!50}a^{10}+\frac{20\!\cdots\!18}{52\!\cdots\!71}a^{9}-\frac{29\!\cdots\!73}{52\!\cdots\!71}a^{8}+\frac{41\!\cdots\!51}{52\!\cdots\!10}a^{7}-\frac{54\!\cdots\!32}{40\!\cdots\!67}a^{6}+\frac{41\!\cdots\!33}{43\!\cdots\!25}a^{5}-\frac{30\!\cdots\!69}{52\!\cdots\!10}a^{4}+\frac{34\!\cdots\!92}{43\!\cdots\!25}a^{3}+\frac{10\!\cdots\!73}{26\!\cdots\!55}a^{2}+\frac{15\!\cdots\!92}{26\!\cdots\!55}a+\frac{15\!\cdots\!02}{43\!\cdots\!25}$, $\frac{28\!\cdots\!71}{27\!\cdots\!25}a^{35}-\frac{10\!\cdots\!52}{13\!\cdots\!75}a^{34}+\frac{74\!\cdots\!91}{26\!\cdots\!50}a^{33}-\frac{16\!\cdots\!67}{13\!\cdots\!75}a^{32}+\frac{64\!\cdots\!33}{13\!\cdots\!75}a^{31}-\frac{40\!\cdots\!39}{26\!\cdots\!50}a^{30}+\frac{68\!\cdots\!54}{13\!\cdots\!75}a^{29}-\frac{87\!\cdots\!61}{87\!\cdots\!50}a^{28}+\frac{23\!\cdots\!63}{58\!\cdots\!90}a^{27}-\frac{26\!\cdots\!72}{43\!\cdots\!25}a^{26}+\frac{55\!\cdots\!03}{26\!\cdots\!50}a^{25}-\frac{34\!\cdots\!77}{13\!\cdots\!75}a^{24}+\frac{39\!\cdots\!23}{48\!\cdots\!50}a^{23}-\frac{46\!\cdots\!64}{43\!\cdots\!25}a^{22}+\frac{61\!\cdots\!39}{26\!\cdots\!55}a^{21}-\frac{77\!\cdots\!09}{26\!\cdots\!50}a^{20}+\frac{27\!\cdots\!47}{55\!\cdots\!50}a^{19}-\frac{40\!\cdots\!91}{87\!\cdots\!50}a^{18}+\frac{18\!\cdots\!53}{26\!\cdots\!50}a^{17}-\frac{16\!\cdots\!34}{14\!\cdots\!75}a^{16}+\frac{96\!\cdots\!23}{13\!\cdots\!75}a^{15}+\frac{33\!\cdots\!93}{13\!\cdots\!75}a^{14}+\frac{23\!\cdots\!98}{43\!\cdots\!25}a^{13}+\frac{46\!\cdots\!92}{10\!\cdots\!75}a^{12}+\frac{78\!\cdots\!47}{26\!\cdots\!50}a^{11}+\frac{40\!\cdots\!26}{13\!\cdots\!75}a^{10}+\frac{97\!\cdots\!57}{87\!\cdots\!50}a^{9}+\frac{17\!\cdots\!64}{13\!\cdots\!75}a^{8}+\frac{11\!\cdots\!72}{40\!\cdots\!67}a^{7}+\frac{41\!\cdots\!28}{13\!\cdots\!75}a^{6}+\frac{12\!\cdots\!59}{26\!\cdots\!50}a^{5}+\frac{30\!\cdots\!59}{87\!\cdots\!50}a^{4}+\frac{86\!\cdots\!07}{20\!\cdots\!50}a^{3}+\frac{36\!\cdots\!78}{14\!\cdots\!75}a^{2}+\frac{27\!\cdots\!61}{13\!\cdots\!75}a+\frac{23\!\cdots\!86}{13\!\cdots\!75}$, $\frac{27\!\cdots\!43}{58\!\cdots\!90}a^{35}-\frac{12\!\cdots\!43}{26\!\cdots\!50}a^{34}+\frac{10\!\cdots\!63}{80\!\cdots\!34}a^{33}-\frac{10\!\cdots\!58}{13\!\cdots\!75}a^{32}+\frac{59\!\cdots\!57}{26\!\cdots\!50}a^{31}-\frac{28\!\cdots\!51}{26\!\cdots\!50}a^{30}+\frac{62\!\cdots\!51}{26\!\cdots\!50}a^{29}-\frac{12\!\cdots\!84}{14\!\cdots\!75}a^{28}+\frac{15\!\cdots\!52}{87\!\cdots\!85}a^{27}-\frac{27\!\cdots\!94}{48\!\cdots\!25}a^{26}+\frac{49\!\cdots\!17}{52\!\cdots\!10}a^{25}-\frac{71\!\cdots\!27}{26\!\cdots\!50}a^{24}+\frac{97\!\cdots\!37}{26\!\cdots\!50}a^{23}-\frac{95\!\cdots\!71}{87\!\cdots\!50}a^{22}+\frac{27\!\cdots\!77}{26\!\cdots\!55}a^{21}-\frac{38\!\cdots\!56}{13\!\cdots\!75}a^{20}+\frac{18\!\cdots\!11}{87\!\cdots\!85}a^{19}-\frac{46\!\cdots\!41}{87\!\cdots\!50}a^{18}+\frac{77\!\cdots\!81}{26\!\cdots\!50}a^{17}-\frac{20\!\cdots\!57}{43\!\cdots\!25}a^{16}+\frac{78\!\cdots\!81}{26\!\cdots\!50}a^{15}-\frac{85\!\cdots\!13}{26\!\cdots\!50}a^{14}+\frac{20\!\cdots\!69}{97\!\cdots\!50}a^{13}-\frac{55\!\cdots\!09}{52\!\cdots\!10}a^{12}+\frac{56\!\cdots\!48}{52\!\cdots\!71}a^{11}-\frac{87\!\cdots\!87}{26\!\cdots\!55}a^{10}+\frac{64\!\cdots\!47}{17\!\cdots\!70}a^{9}-\frac{18\!\cdots\!78}{13\!\cdots\!75}a^{8}+\frac{22\!\cdots\!39}{26\!\cdots\!50}a^{7}-\frac{51\!\cdots\!63}{26\!\cdots\!50}a^{6}+\frac{77\!\cdots\!69}{62\!\cdots\!18}a^{5}-\frac{31\!\cdots\!61}{87\!\cdots\!50}a^{4}+\frac{15\!\cdots\!37}{13\!\cdots\!75}a^{3}-\frac{25\!\cdots\!97}{87\!\cdots\!85}a^{2}+\frac{12\!\cdots\!51}{26\!\cdots\!50}a+\frac{93\!\cdots\!21}{26\!\cdots\!50}$, $\frac{71\!\cdots\!59}{13\!\cdots\!75}a^{35}-\frac{97\!\cdots\!71}{26\!\cdots\!50}a^{34}+\frac{66\!\cdots\!64}{43\!\cdots\!25}a^{33}-\frac{12\!\cdots\!49}{29\!\cdots\!50}a^{32}+\frac{22\!\cdots\!03}{87\!\cdots\!50}a^{31}-\frac{19\!\cdots\!81}{43\!\cdots\!25}a^{30}+\frac{35\!\cdots\!21}{13\!\cdots\!75}a^{29}-\frac{35\!\cdots\!13}{29\!\cdots\!50}a^{28}+\frac{39\!\cdots\!29}{19\!\cdots\!30}a^{27}-\frac{13\!\cdots\!18}{10\!\cdots\!75}a^{26}+\frac{46\!\cdots\!87}{43\!\cdots\!25}a^{25}+\frac{31\!\cdots\!02}{13\!\cdots\!75}a^{24}+\frac{54\!\cdots\!22}{13\!\cdots\!75}a^{23}+\frac{16\!\cdots\!59}{26\!\cdots\!50}a^{22}+\frac{15\!\cdots\!03}{13\!\cdots\!90}a^{21}+\frac{62\!\cdots\!09}{26\!\cdots\!50}a^{20}+\frac{98\!\cdots\!98}{43\!\cdots\!25}a^{19}+\frac{16\!\cdots\!24}{13\!\cdots\!75}a^{18}+\frac{79\!\cdots\!47}{26\!\cdots\!50}a^{17}+\frac{12\!\cdots\!37}{26\!\cdots\!50}a^{16}+\frac{13\!\cdots\!59}{43\!\cdots\!25}a^{15}+\frac{59\!\cdots\!39}{10\!\cdots\!75}a^{14}+\frac{26\!\cdots\!31}{13\!\cdots\!75}a^{13}+\frac{44\!\cdots\!11}{87\!\cdots\!50}a^{12}+\frac{42\!\cdots\!88}{43\!\cdots\!25}a^{11}+\frac{31\!\cdots\!49}{13\!\cdots\!75}a^{10}+\frac{39\!\cdots\!27}{13\!\cdots\!75}a^{9}+\frac{67\!\cdots\!99}{87\!\cdots\!50}a^{8}+\frac{10\!\cdots\!90}{17\!\cdots\!57}a^{7}+\frac{28\!\cdots\!69}{26\!\cdots\!50}a^{6}+\frac{11\!\cdots\!91}{26\!\cdots\!50}a^{5}+\frac{63\!\cdots\!49}{13\!\cdots\!75}a^{4}+\frac{40\!\cdots\!09}{26\!\cdots\!50}a^{3}+\frac{16\!\cdots\!21}{26\!\cdots\!50}a^{2}-\frac{10\!\cdots\!37}{43\!\cdots\!25}a+\frac{75\!\cdots\!14}{13\!\cdots\!75}$, $\frac{72\!\cdots\!43}{10\!\cdots\!75}a^{35}-\frac{12\!\cdots\!89}{40\!\cdots\!70}a^{34}+\frac{51\!\cdots\!07}{26\!\cdots\!55}a^{33}-\frac{14\!\cdots\!73}{26\!\cdots\!50}a^{32}+\frac{68\!\cdots\!81}{20\!\cdots\!50}a^{31}+\frac{16\!\cdots\!59}{52\!\cdots\!10}a^{30}+\frac{15\!\cdots\!86}{43\!\cdots\!25}a^{29}+\frac{22\!\cdots\!49}{29\!\cdots\!50}a^{28}+\frac{11\!\cdots\!38}{43\!\cdots\!25}a^{27}+\frac{90\!\cdots\!56}{13\!\cdots\!75}a^{26}+\frac{37\!\cdots\!97}{26\!\cdots\!50}a^{25}+\frac{10\!\cdots\!53}{26\!\cdots\!50}a^{24}+\frac{24\!\cdots\!84}{43\!\cdots\!25}a^{23}+\frac{80\!\cdots\!07}{52\!\cdots\!71}a^{22}+\frac{39\!\cdots\!01}{26\!\cdots\!50}a^{21}+\frac{20\!\cdots\!51}{48\!\cdots\!25}a^{20}+\frac{13\!\cdots\!48}{43\!\cdots\!25}a^{19}+\frac{12\!\cdots\!02}{13\!\cdots\!75}a^{18}+\frac{18\!\cdots\!01}{43\!\cdots\!25}a^{17}+\frac{89\!\cdots\!06}{52\!\cdots\!71}a^{16}+\frac{23\!\cdots\!47}{52\!\cdots\!10}a^{15}+\frac{16\!\cdots\!57}{87\!\cdots\!50}a^{14}+\frac{41\!\cdots\!29}{13\!\cdots\!75}a^{13}+\frac{38\!\cdots\!19}{26\!\cdots\!50}a^{12}+\frac{22\!\cdots\!72}{13\!\cdots\!75}a^{11}+\frac{36\!\cdots\!71}{48\!\cdots\!25}a^{10}+\frac{30\!\cdots\!95}{52\!\cdots\!71}a^{9}+\frac{13\!\cdots\!98}{52\!\cdots\!71}a^{8}+\frac{37\!\cdots\!57}{26\!\cdots\!55}a^{7}+\frac{20\!\cdots\!44}{40\!\cdots\!67}a^{6}+\frac{15\!\cdots\!09}{87\!\cdots\!50}a^{5}+\frac{12\!\cdots\!67}{26\!\cdots\!55}a^{4}+\frac{98\!\cdots\!41}{87\!\cdots\!50}a^{3}+\frac{85\!\cdots\!07}{26\!\cdots\!55}a^{2}+\frac{16\!\cdots\!31}{52\!\cdots\!10}a+\frac{17\!\cdots\!71}{87\!\cdots\!50}$, $\frac{37\!\cdots\!51}{67\!\cdots\!50}a^{35}-\frac{28\!\cdots\!69}{13\!\cdots\!90}a^{34}+\frac{13\!\cdots\!87}{87\!\cdots\!85}a^{33}+\frac{37\!\cdots\!66}{43\!\cdots\!25}a^{32}+\frac{89\!\cdots\!48}{33\!\cdots\!25}a^{31}+\frac{57\!\cdots\!69}{17\!\cdots\!70}a^{30}+\frac{80\!\cdots\!27}{29\!\cdots\!50}a^{29}+\frac{10\!\cdots\!51}{14\!\cdots\!75}a^{28}+\frac{30\!\cdots\!83}{14\!\cdots\!75}a^{27}+\frac{52\!\cdots\!67}{87\!\cdots\!50}a^{26}+\frac{48\!\cdots\!26}{43\!\cdots\!25}a^{25}+\frac{15\!\cdots\!74}{43\!\cdots\!25}a^{24}+\frac{41\!\cdots\!71}{97\!\cdots\!50}a^{23}+\frac{23\!\cdots\!10}{17\!\cdots\!57}a^{22}+\frac{10\!\cdots\!41}{87\!\cdots\!50}a^{21}+\frac{54\!\cdots\!94}{14\!\cdots\!75}a^{20}+\frac{69\!\cdots\!11}{29\!\cdots\!50}a^{19}+\frac{72\!\cdots\!89}{87\!\cdots\!50}a^{18}+\frac{48\!\cdots\!91}{14\!\cdots\!75}a^{17}+\frac{25\!\cdots\!11}{17\!\cdots\!57}a^{16}+\frac{59\!\cdots\!97}{17\!\cdots\!70}a^{15}+\frac{23\!\cdots\!56}{14\!\cdots\!75}a^{14}+\frac{21\!\cdots\!03}{87\!\cdots\!50}a^{13}+\frac{10\!\cdots\!79}{87\!\cdots\!50}a^{12}+\frac{11\!\cdots\!29}{87\!\cdots\!50}a^{11}+\frac{89\!\cdots\!74}{14\!\cdots\!75}a^{10}+\frac{16\!\cdots\!03}{35\!\cdots\!14}a^{9}+\frac{71\!\cdots\!11}{35\!\cdots\!14}a^{8}+\frac{98\!\cdots\!97}{87\!\cdots\!85}a^{7}+\frac{54\!\cdots\!19}{13\!\cdots\!89}a^{6}+\frac{19\!\cdots\!72}{14\!\cdots\!75}a^{5}+\frac{33\!\cdots\!27}{87\!\cdots\!85}a^{4}+\frac{41\!\cdots\!76}{48\!\cdots\!25}a^{3}+\frac{22\!\cdots\!12}{87\!\cdots\!85}a^{2}+\frac{43\!\cdots\!91}{17\!\cdots\!70}a+\frac{46\!\cdots\!18}{14\!\cdots\!75}$, $\frac{10\!\cdots\!26}{17\!\cdots\!57}a^{35}-\frac{63\!\cdots\!71}{87\!\cdots\!50}a^{34}+\frac{75\!\cdots\!79}{43\!\cdots\!25}a^{33}-\frac{58\!\cdots\!82}{43\!\cdots\!25}a^{32}+\frac{13\!\cdots\!74}{43\!\cdots\!25}a^{31}-\frac{17\!\cdots\!11}{87\!\cdots\!85}a^{30}+\frac{54\!\cdots\!93}{17\!\cdots\!70}a^{29}-\frac{72\!\cdots\!86}{43\!\cdots\!25}a^{28}+\frac{10\!\cdots\!07}{43\!\cdots\!25}a^{27}-\frac{50\!\cdots\!29}{43\!\cdots\!25}a^{26}+\frac{21\!\cdots\!67}{17\!\cdots\!70}a^{25}-\frac{16\!\cdots\!13}{29\!\cdots\!50}a^{24}+\frac{10\!\cdots\!59}{22\!\cdots\!50}a^{23}-\frac{98\!\cdots\!08}{43\!\cdots\!25}a^{22}+\frac{19\!\cdots\!58}{14\!\cdots\!75}a^{21}-\frac{59\!\cdots\!99}{97\!\cdots\!50}a^{20}+\frac{15\!\cdots\!09}{58\!\cdots\!90}a^{19}-\frac{38\!\cdots\!66}{33\!\cdots\!25}a^{18}+\frac{64\!\cdots\!27}{17\!\cdots\!70}a^{17}-\frac{10\!\cdots\!87}{87\!\cdots\!50}a^{16}+\frac{31\!\cdots\!61}{87\!\cdots\!50}a^{15}-\frac{46\!\cdots\!14}{43\!\cdots\!25}a^{14}+\frac{10\!\cdots\!86}{43\!\cdots\!25}a^{13}-\frac{51\!\cdots\!67}{87\!\cdots\!50}a^{12}+\frac{49\!\cdots\!54}{43\!\cdots\!25}a^{11}-\frac{25\!\cdots\!67}{87\!\cdots\!50}a^{10}+\frac{34\!\cdots\!67}{97\!\cdots\!50}a^{9}-\frac{37\!\cdots\!92}{43\!\cdots\!25}a^{8}+\frac{68\!\cdots\!53}{97\!\cdots\!50}a^{7}-\frac{20\!\cdots\!21}{87\!\cdots\!50}a^{6}+\frac{67\!\cdots\!13}{87\!\cdots\!50}a^{5}-\frac{88\!\cdots\!11}{29\!\cdots\!50}a^{4}+\frac{21\!\cdots\!53}{29\!\cdots\!50}a^{3}-\frac{19\!\cdots\!33}{87\!\cdots\!50}a^{2}+\frac{63\!\cdots\!27}{74\!\cdots\!50}a-\frac{16\!\cdots\!84}{48\!\cdots\!25}$, $\frac{19\!\cdots\!87}{13\!\cdots\!75}a^{35}-\frac{32\!\cdots\!29}{26\!\cdots\!50}a^{34}+\frac{17\!\cdots\!83}{43\!\cdots\!25}a^{33}-\frac{82\!\cdots\!04}{43\!\cdots\!25}a^{32}+\frac{20\!\cdots\!31}{29\!\cdots\!50}a^{31}-\frac{23\!\cdots\!63}{97\!\cdots\!50}a^{30}+\frac{19\!\cdots\!59}{26\!\cdots\!50}a^{29}-\frac{14\!\cdots\!87}{87\!\cdots\!50}a^{28}+\frac{47\!\cdots\!61}{87\!\cdots\!50}a^{27}-\frac{26\!\cdots\!63}{26\!\cdots\!50}a^{26}+\frac{64\!\cdots\!03}{22\!\cdots\!50}a^{25}-\frac{58\!\cdots\!81}{13\!\cdots\!75}a^{24}+\frac{29\!\cdots\!99}{26\!\cdots\!55}a^{23}-\frac{47\!\cdots\!39}{26\!\cdots\!50}a^{22}+\frac{26\!\cdots\!57}{87\!\cdots\!50}a^{21}-\frac{62\!\cdots\!98}{13\!\cdots\!75}a^{20}+\frac{54\!\cdots\!13}{87\!\cdots\!50}a^{19}-\frac{19\!\cdots\!57}{26\!\cdots\!50}a^{18}+\frac{22\!\cdots\!79}{26\!\cdots\!50}a^{17}-\frac{67\!\cdots\!49}{26\!\cdots\!50}a^{16}+\frac{24\!\cdots\!23}{29\!\cdots\!50}a^{15}+\frac{33\!\cdots\!87}{26\!\cdots\!50}a^{14}+\frac{74\!\cdots\!32}{13\!\cdots\!75}a^{13}+\frac{22\!\cdots\!69}{58\!\cdots\!90}a^{12}+\frac{48\!\cdots\!74}{17\!\cdots\!57}a^{11}+\frac{20\!\cdots\!45}{10\!\cdots\!42}a^{10}+\frac{88\!\cdots\!38}{10\!\cdots\!75}a^{9}+\frac{12\!\cdots\!43}{17\!\cdots\!70}a^{8}+\frac{81\!\cdots\!16}{43\!\cdots\!25}a^{7}+\frac{28\!\cdots\!03}{13\!\cdots\!75}a^{6}+\frac{49\!\cdots\!89}{26\!\cdots\!50}a^{5}-\frac{35\!\cdots\!11}{26\!\cdots\!50}a^{4}+\frac{17\!\cdots\!01}{13\!\cdots\!75}a^{3}-\frac{27\!\cdots\!63}{26\!\cdots\!50}a^{2}+\frac{45\!\cdots\!51}{17\!\cdots\!70}a-\frac{68\!\cdots\!87}{26\!\cdots\!50}$, $\frac{12\!\cdots\!47}{22\!\cdots\!50}a^{35}-\frac{65\!\cdots\!47}{87\!\cdots\!50}a^{34}+\frac{14\!\cdots\!83}{87\!\cdots\!50}a^{33}-\frac{62\!\cdots\!47}{43\!\cdots\!25}a^{32}+\frac{24\!\cdots\!02}{87\!\cdots\!85}a^{31}-\frac{93\!\cdots\!16}{43\!\cdots\!25}a^{30}+\frac{25\!\cdots\!63}{87\!\cdots\!50}a^{29}-\frac{10\!\cdots\!61}{58\!\cdots\!90}a^{28}+\frac{37\!\cdots\!71}{17\!\cdots\!50}a^{27}-\frac{38\!\cdots\!71}{29\!\cdots\!50}a^{26}+\frac{99\!\cdots\!57}{87\!\cdots\!50}a^{25}-\frac{57\!\cdots\!39}{87\!\cdots\!85}a^{24}+\frac{19\!\cdots\!27}{43\!\cdots\!25}a^{23}-\frac{12\!\cdots\!29}{48\!\cdots\!25}a^{22}+\frac{10\!\cdots\!09}{87\!\cdots\!50}a^{21}-\frac{61\!\cdots\!41}{87\!\cdots\!50}a^{20}+\frac{35\!\cdots\!13}{14\!\cdots\!75}a^{19}-\frac{50\!\cdots\!17}{37\!\cdots\!25}a^{18}+\frac{28\!\cdots\!33}{87\!\cdots\!50}a^{17}-\frac{22\!\cdots\!91}{14\!\cdots\!75}a^{16}+\frac{47\!\cdots\!39}{16\!\cdots\!50}a^{15}-\frac{60\!\cdots\!59}{43\!\cdots\!25}a^{14}+\frac{54\!\cdots\!47}{29\!\cdots\!50}a^{13}-\frac{74\!\cdots\!23}{87\!\cdots\!50}a^{12}+\frac{16\!\cdots\!56}{21\!\cdots\!25}a^{11}-\frac{19\!\cdots\!54}{43\!\cdots\!25}a^{10}+\frac{28\!\cdots\!53}{14\!\cdots\!75}a^{9}-\frac{12\!\cdots\!01}{87\!\cdots\!50}a^{8}+\frac{21\!\cdots\!33}{87\!\cdots\!85}a^{7}-\frac{16\!\cdots\!26}{43\!\cdots\!25}a^{6}-\frac{38\!\cdots\!39}{35\!\cdots\!14}a^{5}-\frac{13\!\cdots\!93}{29\!\cdots\!50}a^{4}-\frac{21\!\cdots\!39}{35\!\cdots\!14}a^{3}-\frac{47\!\cdots\!98}{14\!\cdots\!75}a^{2}-\frac{33\!\cdots\!29}{87\!\cdots\!50}a-\frac{20\!\cdots\!96}{43\!\cdots\!25}$, $\frac{30\!\cdots\!11}{87\!\cdots\!50}a^{35}-\frac{36\!\cdots\!99}{87\!\cdots\!50}a^{34}+\frac{32\!\cdots\!32}{33\!\cdots\!25}a^{33}-\frac{67\!\cdots\!07}{87\!\cdots\!50}a^{32}+\frac{14\!\cdots\!33}{87\!\cdots\!50}a^{31}-\frac{19\!\cdots\!43}{17\!\cdots\!57}a^{30}+\frac{76\!\cdots\!21}{43\!\cdots\!25}a^{29}-\frac{83\!\cdots\!71}{87\!\cdots\!50}a^{28}+\frac{57\!\cdots\!21}{43\!\cdots\!25}a^{27}-\frac{58\!\cdots\!43}{87\!\cdots\!50}a^{26}+\frac{29\!\cdots\!17}{43\!\cdots\!25}a^{25}-\frac{96\!\cdots\!81}{29\!\cdots\!95}a^{24}+\frac{38\!\cdots\!22}{14\!\cdots\!75}a^{23}-\frac{56\!\cdots\!92}{43\!\cdots\!25}a^{22}+\frac{10\!\cdots\!34}{14\!\cdots\!75}a^{21}-\frac{34\!\cdots\!39}{97\!\cdots\!50}a^{20}+\frac{21\!\cdots\!61}{14\!\cdots\!75}a^{19}-\frac{57\!\cdots\!51}{87\!\cdots\!50}a^{18}+\frac{16\!\cdots\!27}{87\!\cdots\!50}a^{17}-\frac{61\!\cdots\!63}{87\!\cdots\!50}a^{16}+\frac{15\!\cdots\!59}{87\!\cdots\!50}a^{15}-\frac{10\!\cdots\!11}{17\!\cdots\!70}a^{14}+\frac{10\!\cdots\!19}{87\!\cdots\!50}a^{13}-\frac{60\!\cdots\!59}{17\!\cdots\!70}a^{12}+\frac{86\!\cdots\!61}{17\!\cdots\!70}a^{11}-\frac{31\!\cdots\!83}{17\!\cdots\!70}a^{10}+\frac{63\!\cdots\!79}{48\!\cdots\!25}a^{9}-\frac{29\!\cdots\!89}{51\!\cdots\!50}a^{8}+\frac{18\!\cdots\!07}{97\!\cdots\!50}a^{7}-\frac{14\!\cdots\!79}{87\!\cdots\!50}a^{6}+\frac{17\!\cdots\!33}{43\!\cdots\!25}a^{5}-\frac{60\!\cdots\!59}{29\!\cdots\!50}a^{4}+\frac{96\!\cdots\!52}{14\!\cdots\!75}a^{3}-\frac{13\!\cdots\!77}{87\!\cdots\!50}a^{2}-\frac{97\!\cdots\!97}{74\!\cdots\!50}a-\frac{12\!\cdots\!11}{74\!\cdots\!50}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4866030378143.887 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 4866030378143.887 \cdot 21888}{6\cdot\sqrt{194462611843897382024510486606832173718103280006113355559179361}}\cr\approx \mathstrut & 0.296516741371694 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 28*x^34 - 17*x^33 + 482*x^32 - 236*x^31 + 5049*x^30 - 1832*x^29 + 37992*x^28 - 12295*x^27 + 199953*x^26 - 58763*x^25 + 782564*x^24 - 233544*x^23 + 2165880*x^22 - 629685*x^21 + 4427149*x^20 - 1126928*x^19 + 6143602*x^18 - 998749*x^17 + 6093363*x^16 - 685062*x^15 + 4237386*x^14 - 223893*x^13 + 2109469*x^12 - 79641*x^11 + 708581*x^10 - 7791*x^9 + 162475*x^8 - 6767*x^7 + 22097*x^6 - 1065*x^5 + 2093*x^4 - 92*x^3 + 81*x^2 + 6*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - x^35 + 28*x^34 - 17*x^33 + 482*x^32 - 236*x^31 + 5049*x^30 - 1832*x^29 + 37992*x^28 - 12295*x^27 + 199953*x^26 - 58763*x^25 + 782564*x^24 - 233544*x^23 + 2165880*x^22 - 629685*x^21 + 4427149*x^20 - 1126928*x^19 + 6143602*x^18 - 998749*x^17 + 6093363*x^16 - 685062*x^15 + 4237386*x^14 - 223893*x^13 + 2109469*x^12 - 79641*x^11 + 708581*x^10 - 7791*x^9 + 162475*x^8 - 6767*x^7 + 22097*x^6 - 1065*x^5 + 2093*x^4 - 92*x^3 + 81*x^2 + 6*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - x^35 + 28*x^34 - 17*x^33 + 482*x^32 - 236*x^31 + 5049*x^30 - 1832*x^29 + 37992*x^28 - 12295*x^27 + 199953*x^26 - 58763*x^25 + 782564*x^24 - 233544*x^23 + 2165880*x^22 - 629685*x^21 + 4427149*x^20 - 1126928*x^19 + 6143602*x^18 - 998749*x^17 + 6093363*x^16 - 685062*x^15 + 4237386*x^14 - 223893*x^13 + 2109469*x^12 - 79641*x^11 + 708581*x^10 - 7791*x^9 + 162475*x^8 - 6767*x^7 + 22097*x^6 - 1065*x^5 + 2093*x^4 - 92*x^3 + 81*x^2 + 6*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 28*x^34 - 17*x^33 + 482*x^32 - 236*x^31 + 5049*x^30 - 1832*x^29 + 37992*x^28 - 12295*x^27 + 199953*x^26 - 58763*x^25 + 782564*x^24 - 233544*x^23 + 2165880*x^22 - 629685*x^21 + 4427149*x^20 - 1126928*x^19 + 6143602*x^18 - 998749*x^17 + 6093363*x^16 - 685062*x^15 + 4237386*x^14 - 223893*x^13 + 2109469*x^12 - 79641*x^11 + 708581*x^10 - 7791*x^9 + 162475*x^8 - 6767*x^7 + 22097*x^6 - 1065*x^5 + 2093*x^4 - 92*x^3 + 81*x^2 + 6*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6^2$ (as 36T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_6^2$
Character table for $C_6^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{13}) \), 3.3.169.1, 3.3.8281.2, \(\Q(\zeta_{7})^+\), 3.3.8281.1, \(\Q(\sqrt{-3}, \sqrt{13})\), 6.0.771147.1, 6.0.1851523947.1, 6.0.64827.1, 6.0.1851523947.2, 6.0.10024911.1, \(\Q(\zeta_{13})^+\), 6.0.24069811311.2, 6.6.891474493.2, 6.0.142424919.1, 6.6.5274997.1, 6.0.24069811311.1, 6.6.891474493.1, 9.9.567869252041.1, 12.0.100498840557921.1, 12.0.579355816547143538721.1, 12.0.20284857552156561.1, 12.0.579355816547143538721.2, 18.0.6347285018761982937208599123.3, 18.0.13944985186220076513047292273231.1, 18.18.708478645847689707516501157.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{6}$ R ${\href{/padicField/5.6.0.1}{6} }^{6}$ R ${\href{/padicField/11.6.0.1}{6} }^{6}$ R ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.6.0.1}{6} }^{6}$ ${\href{/padicField/23.6.0.1}{6} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.6.0.1}{6} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{6}$ ${\href{/padicField/43.3.0.1}{3} }^{12}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ ${\href{/padicField/53.6.0.1}{6} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(7\) Copy content Toggle raw display 7.18.12.1$x^{18} + 3 x^{16} + 57 x^{15} + 15 x^{14} + 90 x^{13} + 424 x^{12} - 921 x^{11} - 3090 x^{10} - 6496 x^{9} - 10560 x^{8} + 6912 x^{7} + 28033 x^{6} + 33237 x^{5} + 188463 x^{4} - 139476 x^{3} + 351552 x^{2} - 514905 x + 582014$$3$$6$$12$$C_6 \times C_3$$[\ ]_{3}^{6}$
7.18.12.1$x^{18} + 3 x^{16} + 57 x^{15} + 15 x^{14} + 90 x^{13} + 424 x^{12} - 921 x^{11} - 3090 x^{10} - 6496 x^{9} - 10560 x^{8} + 6912 x^{7} + 28033 x^{6} + 33237 x^{5} + 188463 x^{4} - 139476 x^{3} + 351552 x^{2} - 514905 x + 582014$$3$$6$$12$$C_6 \times C_3$$[\ ]_{3}^{6}$
\(13\) Copy content Toggle raw display 13.6.5.2$x^{6} + 13$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.2$x^{6} + 13$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.2$x^{6} + 13$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.2$x^{6} + 13$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.2$x^{6} + 13$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.5.2$x^{6} + 13$$6$$1$$5$$C_6$$[\ ]_{6}$