Normalized defining polynomial
\( x^{36} - x^{35} - 2 x^{34} + 5 x^{33} + x^{32} - 16 x^{31} + 13 x^{30} + 35 x^{29} - 74 x^{28} - 31 x^{27} + 253 x^{26} - 160 x^{25} - 599 x^{24} + 1079 x^{23} + 718 x^{22} - 3955 x^{21} + 1801 x^{20} + 10064 x^{19} - 15467 x^{18} + 30192 x^{17} + 16209 x^{16} - 106785 x^{15} + 58158 x^{14} + 262197 x^{13} - 436671 x^{12} - 349920 x^{11} + 1659933 x^{10} - 610173 x^{9} - 4369626 x^{8} + 6200145 x^{7} + 6908733 x^{6} - 25509168 x^{5} + 4782969 x^{4} + 71744535 x^{3} - 86093442 x^{2} - 129140163 x + 387420489 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{46401} a^{19} + \frac{1}{3} a^{18} - \frac{1}{3} a^{17} + \frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{5403}{15467}$, $\frac{1}{139203} a^{20} - \frac{1}{139203} a^{19} - \frac{4}{9} a^{18} + \frac{1}{9} a^{17} + \frac{2}{9} a^{16} + \frac{4}{9} a^{15} - \frac{1}{9} a^{14} - \frac{2}{9} a^{13} - \frac{4}{9} a^{12} + \frac{1}{9} a^{11} + \frac{2}{9} a^{10} + \frac{4}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} - \frac{4}{9} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2} + \frac{10064}{46401} a + \frac{1801}{15467}$, $\frac{1}{417609} a^{21} - \frac{1}{417609} a^{20} - \frac{2}{417609} a^{19} - \frac{8}{27} a^{18} - \frac{7}{27} a^{17} + \frac{4}{27} a^{16} - \frac{10}{27} a^{15} - \frac{2}{27} a^{14} + \frac{5}{27} a^{13} + \frac{1}{27} a^{12} + \frac{11}{27} a^{11} + \frac{13}{27} a^{10} + \frac{8}{27} a^{9} + \frac{7}{27} a^{8} - \frac{4}{27} a^{7} + \frac{10}{27} a^{6} + \frac{2}{27} a^{5} - \frac{5}{27} a^{4} - \frac{1}{27} a^{3} + \frac{10064}{139203} a^{2} + \frac{1801}{46401} a - \frac{3955}{15467}$, $\frac{1}{1252827} a^{22} - \frac{1}{1252827} a^{21} - \frac{2}{1252827} a^{20} + \frac{5}{1252827} a^{19} + \frac{20}{81} a^{18} + \frac{4}{81} a^{17} + \frac{17}{81} a^{16} - \frac{29}{81} a^{15} - \frac{22}{81} a^{14} + \frac{28}{81} a^{13} + \frac{38}{81} a^{12} + \frac{40}{81} a^{11} + \frac{8}{81} a^{10} + \frac{34}{81} a^{9} + \frac{23}{81} a^{8} + \frac{37}{81} a^{7} - \frac{25}{81} a^{6} - \frac{5}{81} a^{5} - \frac{1}{81} a^{4} + \frac{10064}{417609} a^{3} + \frac{1801}{139203} a^{2} - \frac{3955}{46401} a + \frac{718}{15467}$, $\frac{1}{3758481} a^{23} - \frac{1}{3758481} a^{22} - \frac{2}{3758481} a^{21} + \frac{5}{3758481} a^{20} + \frac{1}{3758481} a^{19} - \frac{77}{243} a^{18} + \frac{17}{243} a^{17} - \frac{29}{243} a^{16} - \frac{22}{243} a^{15} + \frac{109}{243} a^{14} - \frac{43}{243} a^{13} - \frac{41}{243} a^{12} - \frac{73}{243} a^{11} - \frac{47}{243} a^{10} + \frac{23}{243} a^{9} + \frac{118}{243} a^{8} + \frac{56}{243} a^{7} + \frac{76}{243} a^{6} - \frac{1}{243} a^{5} + \frac{10064}{1252827} a^{4} + \frac{1801}{417609} a^{3} - \frac{3955}{139203} a^{2} + \frac{718}{46401} a + \frac{1079}{15467}$, $\frac{1}{11275443} a^{24} - \frac{1}{11275443} a^{23} - \frac{2}{11275443} a^{22} + \frac{5}{11275443} a^{21} + \frac{1}{11275443} a^{20} - \frac{16}{11275443} a^{19} - \frac{226}{729} a^{18} - \frac{272}{729} a^{17} + \frac{221}{729} a^{16} - \frac{134}{729} a^{15} + \frac{200}{729} a^{14} + \frac{202}{729} a^{13} - \frac{73}{729} a^{12} + \frac{196}{729} a^{11} + \frac{23}{729} a^{10} + \frac{118}{729} a^{9} - \frac{187}{729} a^{8} - \frac{167}{729} a^{7} - \frac{1}{729} a^{6} + \frac{10064}{3758481} a^{5} + \frac{1801}{1252827} a^{4} - \frac{3955}{417609} a^{3} + \frac{718}{139203} a^{2} + \frac{1079}{46401} a - \frac{599}{15467}$, $\frac{1}{33826329} a^{25} - \frac{1}{33826329} a^{24} - \frac{2}{33826329} a^{23} + \frac{5}{33826329} a^{22} + \frac{1}{33826329} a^{21} - \frac{16}{33826329} a^{20} + \frac{13}{33826329} a^{19} + \frac{457}{2187} a^{18} + \frac{221}{2187} a^{17} + \frac{595}{2187} a^{16} + \frac{929}{2187} a^{15} - \frac{527}{2187} a^{14} - \frac{73}{2187} a^{13} - \frac{533}{2187} a^{12} + \frac{752}{2187} a^{11} + \frac{847}{2187} a^{10} - \frac{916}{2187} a^{9} + \frac{562}{2187} a^{8} - \frac{1}{2187} a^{7} + \frac{10064}{11275443} a^{6} + \frac{1801}{3758481} a^{5} - \frac{3955}{1252827} a^{4} + \frac{718}{417609} a^{3} + \frac{1079}{139203} a^{2} - \frac{599}{46401} a - \frac{160}{15467}$, $\frac{1}{101478987} a^{26} - \frac{1}{101478987} a^{25} - \frac{2}{101478987} a^{24} + \frac{5}{101478987} a^{23} + \frac{1}{101478987} a^{22} - \frac{16}{101478987} a^{21} + \frac{13}{101478987} a^{20} + \frac{35}{101478987} a^{19} + \frac{221}{6561} a^{18} - \frac{1592}{6561} a^{17} + \frac{929}{6561} a^{16} - \frac{2714}{6561} a^{15} - \frac{73}{6561} a^{14} + \frac{1654}{6561} a^{13} - \frac{1435}{6561} a^{12} + \frac{3034}{6561} a^{11} + \frac{1271}{6561} a^{10} + \frac{2749}{6561} a^{9} - \frac{1}{6561} a^{8} + \frac{10064}{33826329} a^{7} + \frac{1801}{11275443} a^{6} - \frac{3955}{3758481} a^{5} + \frac{718}{1252827} a^{4} + \frac{1079}{417609} a^{3} - \frac{599}{139203} a^{2} - \frac{160}{46401} a + \frac{253}{15467}$, $\frac{1}{304436961} a^{27} - \frac{1}{304436961} a^{26} - \frac{2}{304436961} a^{25} + \frac{5}{304436961} a^{24} + \frac{1}{304436961} a^{23} - \frac{16}{304436961} a^{22} + \frac{13}{304436961} a^{21} + \frac{35}{304436961} a^{20} - \frac{74}{304436961} a^{19} - \frac{1592}{19683} a^{18} + \frac{929}{19683} a^{17} + \frac{3847}{19683} a^{16} - \frac{6634}{19683} a^{15} - \frac{4907}{19683} a^{14} + \frac{5126}{19683} a^{13} + \frac{9595}{19683} a^{12} - \frac{5290}{19683} a^{11} - \frac{3812}{19683} a^{10} - \frac{1}{19683} a^{9} + \frac{10064}{101478987} a^{8} + \frac{1801}{33826329} a^{7} - \frac{3955}{11275443} a^{6} + \frac{718}{3758481} a^{5} + \frac{1079}{1252827} a^{4} - \frac{599}{417609} a^{3} - \frac{160}{139203} a^{2} + \frac{253}{46401} a - \frac{31}{15467}$, $\frac{1}{913310883} a^{28} - \frac{1}{913310883} a^{27} - \frac{2}{913310883} a^{26} + \frac{5}{913310883} a^{25} + \frac{1}{913310883} a^{24} - \frac{16}{913310883} a^{23} + \frac{13}{913310883} a^{22} + \frac{35}{913310883} a^{21} - \frac{74}{913310883} a^{20} - \frac{31}{913310883} a^{19} + \frac{20612}{59049} a^{18} - \frac{15836}{59049} a^{17} + \frac{13049}{59049} a^{16} - \frac{24590}{59049} a^{15} - \frac{14557}{59049} a^{14} + \frac{29278}{59049} a^{13} + \frac{14393}{59049} a^{12} + \frac{15871}{59049} a^{11} - \frac{1}{59049} a^{10} + \frac{10064}{304436961} a^{9} + \frac{1801}{101478987} a^{8} - \frac{3955}{33826329} a^{7} + \frac{718}{11275443} a^{6} + \frac{1079}{3758481} a^{5} - \frac{599}{1252827} a^{4} - \frac{160}{417609} a^{3} + \frac{253}{139203} a^{2} - \frac{31}{46401} a - \frac{74}{15467}$, $\frac{1}{2739932649} a^{29} - \frac{1}{2739932649} a^{28} - \frac{2}{2739932649} a^{27} + \frac{5}{2739932649} a^{26} + \frac{1}{2739932649} a^{25} - \frac{16}{2739932649} a^{24} + \frac{13}{2739932649} a^{23} + \frac{35}{2739932649} a^{22} - \frac{74}{2739932649} a^{21} - \frac{31}{2739932649} a^{20} + \frac{253}{2739932649} a^{19} + \frac{43213}{177147} a^{18} + \frac{72098}{177147} a^{17} - \frac{24590}{177147} a^{16} - \frac{14557}{177147} a^{15} + \frac{88327}{177147} a^{14} - \frac{44656}{177147} a^{13} - \frac{43178}{177147} a^{12} - \frac{1}{177147} a^{11} + \frac{10064}{913310883} a^{10} + \frac{1801}{304436961} a^{9} - \frac{3955}{101478987} a^{8} + \frac{718}{33826329} a^{7} + \frac{1079}{11275443} a^{6} - \frac{599}{3758481} a^{5} - \frac{160}{1252827} a^{4} + \frac{253}{417609} a^{3} - \frac{31}{139203} a^{2} - \frac{74}{46401} a + \frac{35}{15467}$, $\frac{1}{8219797947} a^{30} - \frac{1}{8219797947} a^{29} - \frac{2}{8219797947} a^{28} + \frac{5}{8219797947} a^{27} + \frac{1}{8219797947} a^{26} - \frac{16}{8219797947} a^{25} + \frac{13}{8219797947} a^{24} + \frac{35}{8219797947} a^{23} - \frac{74}{8219797947} a^{22} - \frac{31}{8219797947} a^{21} + \frac{253}{8219797947} a^{20} - \frac{160}{8219797947} a^{19} + \frac{249245}{531441} a^{18} + \frac{152557}{531441} a^{17} + \frac{162590}{531441} a^{16} - \frac{88820}{531441} a^{15} + \frac{132491}{531441} a^{14} + \frac{133969}{531441} a^{13} - \frac{1}{531441} a^{12} + \frac{10064}{2739932649} a^{11} + \frac{1801}{913310883} a^{10} - \frac{3955}{304436961} a^{9} + \frac{718}{101478987} a^{8} + \frac{1079}{33826329} a^{7} - \frac{599}{11275443} a^{6} - \frac{160}{3758481} a^{5} + \frac{253}{1252827} a^{4} - \frac{31}{417609} a^{3} - \frac{74}{139203} a^{2} + \frac{35}{46401} a + \frac{13}{15467}$, $\frac{1}{24659393841} a^{31} - \frac{1}{24659393841} a^{30} - \frac{2}{24659393841} a^{29} + \frac{5}{24659393841} a^{28} + \frac{1}{24659393841} a^{27} - \frac{16}{24659393841} a^{26} + \frac{13}{24659393841} a^{25} + \frac{35}{24659393841} a^{24} - \frac{74}{24659393841} a^{23} - \frac{31}{24659393841} a^{22} + \frac{253}{24659393841} a^{21} - \frac{160}{24659393841} a^{20} - \frac{599}{24659393841} a^{19} + \frac{152557}{1594323} a^{18} + \frac{694031}{1594323} a^{17} + \frac{442621}{1594323} a^{16} + \frac{663932}{1594323} a^{15} - \frac{397472}{1594323} a^{14} - \frac{1}{1594323} a^{13} + \frac{10064}{8219797947} a^{12} + \frac{1801}{2739932649} a^{11} - \frac{3955}{913310883} a^{10} + \frac{718}{304436961} a^{9} + \frac{1079}{101478987} a^{8} - \frac{599}{33826329} a^{7} - \frac{160}{11275443} a^{6} + \frac{253}{3758481} a^{5} - \frac{31}{1252827} a^{4} - \frac{74}{417609} a^{3} + \frac{35}{139203} a^{2} + \frac{13}{46401} a - \frac{16}{15467}$, $\frac{1}{73978181523} a^{32} - \frac{1}{73978181523} a^{31} - \frac{2}{73978181523} a^{30} + \frac{5}{73978181523} a^{29} + \frac{1}{73978181523} a^{28} - \frac{16}{73978181523} a^{27} + \frac{13}{73978181523} a^{26} + \frac{35}{73978181523} a^{25} - \frac{74}{73978181523} a^{24} - \frac{31}{73978181523} a^{23} + \frac{253}{73978181523} a^{22} - \frac{160}{73978181523} a^{21} - \frac{599}{73978181523} a^{20} + \frac{1079}{73978181523} a^{19} + \frac{2288354}{4782969} a^{18} + \frac{2036944}{4782969} a^{17} + \frac{663932}{4782969} a^{16} - \frac{1991795}{4782969} a^{15} - \frac{1}{4782969} a^{14} + \frac{10064}{24659393841} a^{13} + \frac{1801}{8219797947} a^{12} - \frac{3955}{2739932649} a^{11} + \frac{718}{913310883} a^{10} + \frac{1079}{304436961} a^{9} - \frac{599}{101478987} a^{8} - \frac{160}{33826329} a^{7} + \frac{253}{11275443} a^{6} - \frac{31}{3758481} a^{5} - \frac{74}{1252827} a^{4} + \frac{35}{417609} a^{3} + \frac{13}{139203} a^{2} - \frac{16}{46401} a + \frac{1}{15467}$, $\frac{1}{221934544569} a^{33} - \frac{1}{221934544569} a^{32} - \frac{2}{221934544569} a^{31} + \frac{5}{221934544569} a^{30} + \frac{1}{221934544569} a^{29} - \frac{16}{221934544569} a^{28} + \frac{13}{221934544569} a^{27} + \frac{35}{221934544569} a^{26} - \frac{74}{221934544569} a^{25} - \frac{31}{221934544569} a^{24} + \frac{253}{221934544569} a^{23} - \frac{160}{221934544569} a^{22} - \frac{599}{221934544569} a^{21} + \frac{1079}{221934544569} a^{20} + \frac{718}{221934544569} a^{19} - \frac{2746025}{14348907} a^{18} - \frac{4119037}{14348907} a^{17} - \frac{1991795}{14348907} a^{16} - \frac{1}{14348907} a^{15} + \frac{10064}{73978181523} a^{14} + \frac{1801}{24659393841} a^{13} - \frac{3955}{8219797947} a^{12} + \frac{718}{2739932649} a^{11} + \frac{1079}{913310883} a^{10} - \frac{599}{304436961} a^{9} - \frac{160}{101478987} a^{8} + \frac{253}{33826329} a^{7} - \frac{31}{11275443} a^{6} - \frac{74}{3758481} a^{5} + \frac{35}{1252827} a^{4} + \frac{13}{417609} a^{3} - \frac{16}{139203} a^{2} + \frac{1}{46401} a + \frac{5}{15467}$, $\frac{1}{665803633707} a^{34} - \frac{1}{665803633707} a^{33} - \frac{2}{665803633707} a^{32} + \frac{5}{665803633707} a^{31} + \frac{1}{665803633707} a^{30} - \frac{16}{665803633707} a^{29} + \frac{13}{665803633707} a^{28} + \frac{35}{665803633707} a^{27} - \frac{74}{665803633707} a^{26} - \frac{31}{665803633707} a^{25} + \frac{253}{665803633707} a^{24} - \frac{160}{665803633707} a^{23} - \frac{599}{665803633707} a^{22} + \frac{1079}{665803633707} a^{21} + \frac{718}{665803633707} a^{20} - \frac{3955}{665803633707} a^{19} - \frac{4119037}{43046721} a^{18} + \frac{12357112}{43046721} a^{17} - \frac{1}{43046721} a^{16} + \frac{10064}{221934544569} a^{15} + \frac{1801}{73978181523} a^{14} - \frac{3955}{24659393841} a^{13} + \frac{718}{8219797947} a^{12} + \frac{1079}{2739932649} a^{11} - \frac{599}{913310883} a^{10} - \frac{160}{304436961} a^{9} + \frac{253}{101478987} a^{8} - \frac{31}{33826329} a^{7} - \frac{74}{11275443} a^{6} + \frac{35}{3758481} a^{5} + \frac{13}{1252827} a^{4} - \frac{16}{417609} a^{3} + \frac{1}{139203} a^{2} + \frac{5}{46401} a - \frac{2}{15467}$, $\frac{1}{1997410901121} a^{35} - \frac{1}{1997410901121} a^{34} - \frac{2}{1997410901121} a^{33} + \frac{5}{1997410901121} a^{32} + \frac{1}{1997410901121} a^{31} - \frac{16}{1997410901121} a^{30} + \frac{13}{1997410901121} a^{29} + \frac{35}{1997410901121} a^{28} - \frac{74}{1997410901121} a^{27} - \frac{31}{1997410901121} a^{26} + \frac{253}{1997410901121} a^{25} - \frac{160}{1997410901121} a^{24} - \frac{599}{1997410901121} a^{23} + \frac{1079}{1997410901121} a^{22} + \frac{718}{1997410901121} a^{21} - \frac{3955}{1997410901121} a^{20} + \frac{1801}{1997410901121} a^{19} + \frac{12357112}{129140163} a^{18} - \frac{1}{129140163} a^{17} + \frac{10064}{665803633707} a^{16} + \frac{1801}{221934544569} a^{15} - \frac{3955}{73978181523} a^{14} + \frac{718}{24659393841} a^{13} + \frac{1079}{8219797947} a^{12} - \frac{599}{2739932649} a^{11} - \frac{160}{913310883} a^{10} + \frac{253}{304436961} a^{9} - \frac{31}{101478987} a^{8} - \frac{74}{33826329} a^{7} + \frac{35}{11275443} a^{6} + \frac{13}{3758481} a^{5} - \frac{16}{1252827} a^{4} + \frac{1}{417609} a^{3} + \frac{5}{139203} a^{2} - \frac{2}{46401} a - \frac{1}{15467}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{10064}{1997410901121} a^{35} + \frac{10064}{1997410901121} a^{34} + \frac{20128}{1997410901121} a^{33} - \frac{50320}{1997410901121} a^{32} - \frac{10064}{1997410901121} a^{31} + \frac{161024}{1997410901121} a^{30} - \frac{130832}{1997410901121} a^{29} - \frac{352240}{1997410901121} a^{28} + \frac{744736}{1997410901121} a^{27} + \frac{311984}{1997410901121} a^{26} - \frac{2546192}{1997410901121} a^{25} + \frac{1610240}{1997410901121} a^{24} + \frac{6028336}{1997410901121} a^{23} - \frac{10859056}{1997410901121} a^{22} - \frac{7225952}{1997410901121} a^{21} + \frac{39803120}{1997410901121} a^{20} - \frac{18125264}{1997410901121} a^{19} + \frac{1801}{129140163} a^{18} + \frac{10064}{129140163} a^{17} - \frac{101284096}{665803633707} a^{16} - \frac{18125264}{221934544569} a^{15} + \frac{39803120}{73978181523} a^{14} - \frac{7225952}{24659393841} a^{13} - \frac{10859056}{8219797947} a^{12} + \frac{6028336}{2739932649} a^{11} + \frac{1610240}{913310883} a^{10} - \frac{2546192}{304436961} a^{9} + \frac{311984}{101478987} a^{8} + \frac{744736}{33826329} a^{7} - \frac{352240}{11275443} a^{6} - \frac{130832}{3758481} a^{5} + \frac{161024}{1252827} a^{4} - \frac{10064}{417609} a^{3} - \frac{50320}{139203} a^{2} + \frac{20128}{46401} a + \frac{10064}{15467} \) (order $38$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | R | $18^{2}$ | $18^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{4}$ | $18^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{4}$ | $18^{2}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||