Properties

Label 36.0.155...125.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.553\times 10^{72}$
Root discriminant \(101.23\)
Ramified primes $5,37$
Class number not computed
Class group not computed
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 22*x^34 - 27*x^33 + 67*x^32 - 207*x^31 - 1315*x^30 - 33*x^29 - 8125*x^28 + 4874*x^27 + 19535*x^26 - 12268*x^25 + 277922*x^24 - 211291*x^23 + 935073*x^22 + 556103*x^21 + 1859369*x^20 + 8410217*x^19 + 1507600*x^18 + 20224879*x^17 + 4629050*x^16 + 12339504*x^15 + 85759609*x^14 + 3804421*x^13 + 229248172*x^12 + 8915595*x^11 + 179709102*x^10 + 277578985*x^9 + 120093874*x^8 + 590929432*x^7 + 16251273*x^6 + 291093237*x^5 + 237370345*x^4 - 94855123*x^3 + 371447631*x^2 - 99193272*x + 97362911)
 
gp: K = bnfinit(y^36 - y^35 + 22*y^34 - 27*y^33 + 67*y^32 - 207*y^31 - 1315*y^30 - 33*y^29 - 8125*y^28 + 4874*y^27 + 19535*y^26 - 12268*y^25 + 277922*y^24 - 211291*y^23 + 935073*y^22 + 556103*y^21 + 1859369*y^20 + 8410217*y^19 + 1507600*y^18 + 20224879*y^17 + 4629050*y^16 + 12339504*y^15 + 85759609*y^14 + 3804421*y^13 + 229248172*y^12 + 8915595*y^11 + 179709102*y^10 + 277578985*y^9 + 120093874*y^8 + 590929432*y^7 + 16251273*y^6 + 291093237*y^5 + 237370345*y^4 - 94855123*y^3 + 371447631*y^2 - 99193272*y + 97362911, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - x^35 + 22*x^34 - 27*x^33 + 67*x^32 - 207*x^31 - 1315*x^30 - 33*x^29 - 8125*x^28 + 4874*x^27 + 19535*x^26 - 12268*x^25 + 277922*x^24 - 211291*x^23 + 935073*x^22 + 556103*x^21 + 1859369*x^20 + 8410217*x^19 + 1507600*x^18 + 20224879*x^17 + 4629050*x^16 + 12339504*x^15 + 85759609*x^14 + 3804421*x^13 + 229248172*x^12 + 8915595*x^11 + 179709102*x^10 + 277578985*x^9 + 120093874*x^8 + 590929432*x^7 + 16251273*x^6 + 291093237*x^5 + 237370345*x^4 - 94855123*x^3 + 371447631*x^2 - 99193272*x + 97362911);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 22*x^34 - 27*x^33 + 67*x^32 - 207*x^31 - 1315*x^30 - 33*x^29 - 8125*x^28 + 4874*x^27 + 19535*x^26 - 12268*x^25 + 277922*x^24 - 211291*x^23 + 935073*x^22 + 556103*x^21 + 1859369*x^20 + 8410217*x^19 + 1507600*x^18 + 20224879*x^17 + 4629050*x^16 + 12339504*x^15 + 85759609*x^14 + 3804421*x^13 + 229248172*x^12 + 8915595*x^11 + 179709102*x^10 + 277578985*x^9 + 120093874*x^8 + 590929432*x^7 + 16251273*x^6 + 291093237*x^5 + 237370345*x^4 - 94855123*x^3 + 371447631*x^2 - 99193272*x + 97362911)
 

\( x^{36} - x^{35} + 22 x^{34} - 27 x^{33} + 67 x^{32} - 207 x^{31} - 1315 x^{30} - 33 x^{29} + \cdots + 97362911 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1552561224397970539319305607385300901659347120825982756912708282470703125\) \(\medspace = 5^{27}\cdot 37^{34}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(101.23\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{3/4}37^{17/18}\approx 101.22945747512976$
Ramified primes:   \(5\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(185=5\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{185}(1,·)$, $\chi_{185}(3,·)$, $\chi_{185}(132,·)$, $\chi_{185}(9,·)$, $\chi_{185}(138,·)$, $\chi_{185}(16,·)$, $\chi_{185}(147,·)$, $\chi_{185}(149,·)$, $\chi_{185}(152,·)$, $\chi_{185}(26,·)$, $\chi_{185}(27,·)$, $\chi_{185}(28,·)$, $\chi_{185}(34,·)$, $\chi_{185}(164,·)$, $\chi_{185}(44,·)$, $\chi_{185}(173,·)$, $\chi_{185}(46,·)$, $\chi_{185}(48,·)$, $\chi_{185}(49,·)$, $\chi_{185}(178,·)$, $\chi_{185}(181,·)$, $\chi_{185}(58,·)$, $\chi_{185}(62,·)$, $\chi_{185}(67,·)$, $\chi_{185}(71,·)$, $\chi_{185}(73,·)$, $\chi_{185}(77,·)$, $\chi_{185}(78,·)$, $\chi_{185}(81,·)$, $\chi_{185}(84,·)$, $\chi_{185}(86,·)$, $\chi_{185}(144,·)$, $\chi_{185}(102,·)$, $\chi_{185}(174,·)$, $\chi_{185}(121,·)$, $\chi_{185}(122,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{179}a^{32}+\frac{48}{179}a^{31}+\frac{17}{179}a^{30}+\frac{75}{179}a^{29}+\frac{81}{179}a^{28}-\frac{14}{179}a^{27}-\frac{6}{179}a^{26}-\frac{21}{179}a^{25}-\frac{74}{179}a^{24}-\frac{19}{179}a^{23}-\frac{87}{179}a^{22}-\frac{4}{179}a^{21}-\frac{70}{179}a^{20}+\frac{56}{179}a^{19}+\frac{49}{179}a^{18}+\frac{70}{179}a^{17}+\frac{24}{179}a^{16}-\frac{53}{179}a^{15}+\frac{88}{179}a^{14}+\frac{62}{179}a^{13}+\frac{86}{179}a^{12}-\frac{4}{179}a^{11}+\frac{21}{179}a^{10}-\frac{40}{179}a^{9}+\frac{49}{179}a^{8}-\frac{1}{179}a^{7}+\frac{52}{179}a^{6}+\frac{22}{179}a^{5}+\frac{46}{179}a^{4}+\frac{61}{179}a^{3}-\frac{72}{179}a^{2}+\frac{88}{179}a-\frac{58}{179}$, $\frac{1}{179}a^{33}+\frac{40}{179}a^{31}-\frac{25}{179}a^{30}+\frac{61}{179}a^{29}+\frac{36}{179}a^{28}-\frac{50}{179}a^{27}+\frac{88}{179}a^{26}+\frac{39}{179}a^{25}-\frac{47}{179}a^{24}-\frac{70}{179}a^{23}+\frac{55}{179}a^{22}-\frac{57}{179}a^{21}+\frac{15}{179}a^{20}+\frac{46}{179}a^{19}+\frac{45}{179}a^{18}+\frac{65}{179}a^{17}+\frac{48}{179}a^{16}-\frac{53}{179}a^{15}-\frac{45}{179}a^{14}-\frac{26}{179}a^{13}-\frac{15}{179}a^{12}+\frac{34}{179}a^{11}+\frac{26}{179}a^{10}-\frac{26}{179}a^{8}-\frac{79}{179}a^{7}+\frac{32}{179}a^{6}+\frac{64}{179}a^{5}+\frac{1}{179}a^{4}+\frac{43}{179}a^{3}-\frac{36}{179}a^{2}+\frac{14}{179}a-\frac{80}{179}$, $\frac{1}{25405649}a^{34}+\frac{13867}{25405649}a^{33}+\frac{53151}{25405649}a^{32}+\frac{2203434}{25405649}a^{31}+\frac{7606367}{25405649}a^{30}+\frac{9126680}{25405649}a^{29}-\frac{1217185}{25405649}a^{28}-\frac{863300}{25405649}a^{27}+\frac{3281295}{25405649}a^{26}-\frac{5382326}{25405649}a^{25}-\frac{11368997}{25405649}a^{24}+\frac{8289665}{25405649}a^{23}+\frac{2285251}{25405649}a^{22}-\frac{3461413}{25405649}a^{21}-\frac{10866440}{25405649}a^{20}+\frac{10343080}{25405649}a^{19}+\frac{12270136}{25405649}a^{18}+\frac{7494808}{25405649}a^{17}+\frac{8690138}{25405649}a^{16}+\frac{1391595}{25405649}a^{15}-\frac{1053384}{25405649}a^{14}-\frac{7758092}{25405649}a^{13}+\frac{5195863}{25405649}a^{12}+\frac{349276}{25405649}a^{11}-\frac{4065072}{25405649}a^{10}-\frac{8126694}{25405649}a^{9}+\frac{11340030}{25405649}a^{8}-\frac{9813604}{25405649}a^{7}-\frac{3246475}{25405649}a^{6}+\frac{4390628}{25405649}a^{5}+\frac{12646054}{25405649}a^{4}+\frac{6754611}{25405649}a^{3}-\frac{937584}{25405649}a^{2}+\frac{3130452}{25405649}a+\frac{11766978}{25405649}$, $\frac{1}{86\!\cdots\!61}a^{35}-\frac{21\!\cdots\!31}{86\!\cdots\!61}a^{34}+\frac{64\!\cdots\!35}{86\!\cdots\!61}a^{33}+\frac{31\!\cdots\!89}{86\!\cdots\!61}a^{32}-\frac{82\!\cdots\!10}{86\!\cdots\!61}a^{31}+\frac{14\!\cdots\!74}{86\!\cdots\!61}a^{30}+\frac{35\!\cdots\!87}{86\!\cdots\!61}a^{29}+\frac{81\!\cdots\!26}{86\!\cdots\!61}a^{28}-\frac{31\!\cdots\!46}{86\!\cdots\!61}a^{27}+\frac{17\!\cdots\!94}{86\!\cdots\!61}a^{26}+\frac{66\!\cdots\!52}{86\!\cdots\!61}a^{25}+\frac{73\!\cdots\!88}{86\!\cdots\!61}a^{24}+\frac{53\!\cdots\!94}{86\!\cdots\!61}a^{23}+\frac{19\!\cdots\!96}{86\!\cdots\!61}a^{22}+\frac{19\!\cdots\!92}{86\!\cdots\!61}a^{21}-\frac{13\!\cdots\!72}{86\!\cdots\!61}a^{20}+\frac{30\!\cdots\!09}{86\!\cdots\!61}a^{19}-\frac{40\!\cdots\!38}{86\!\cdots\!61}a^{18}+\frac{37\!\cdots\!79}{86\!\cdots\!61}a^{17}-\frac{31\!\cdots\!12}{86\!\cdots\!61}a^{16}-\frac{89\!\cdots\!23}{86\!\cdots\!61}a^{15}-\frac{27\!\cdots\!90}{86\!\cdots\!61}a^{14}-\frac{26\!\cdots\!05}{86\!\cdots\!61}a^{13}+\frac{26\!\cdots\!31}{86\!\cdots\!61}a^{12}+\frac{25\!\cdots\!39}{86\!\cdots\!61}a^{11}-\frac{40\!\cdots\!88}{86\!\cdots\!61}a^{10}+\frac{15\!\cdots\!44}{86\!\cdots\!61}a^{9}-\frac{21\!\cdots\!10}{86\!\cdots\!61}a^{8}-\frac{22\!\cdots\!72}{86\!\cdots\!61}a^{7}-\frac{49\!\cdots\!88}{86\!\cdots\!61}a^{6}+\frac{35\!\cdots\!50}{86\!\cdots\!61}a^{5}+\frac{22\!\cdots\!67}{86\!\cdots\!61}a^{4}-\frac{18\!\cdots\!78}{86\!\cdots\!61}a^{3}-\frac{14\!\cdots\!40}{86\!\cdots\!61}a^{2}+\frac{24\!\cdots\!35}{86\!\cdots\!61}a+\frac{63\!\cdots\!81}{86\!\cdots\!61}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + 22*x^34 - 27*x^33 + 67*x^32 - 207*x^31 - 1315*x^30 - 33*x^29 - 8125*x^28 + 4874*x^27 + 19535*x^26 - 12268*x^25 + 277922*x^24 - 211291*x^23 + 935073*x^22 + 556103*x^21 + 1859369*x^20 + 8410217*x^19 + 1507600*x^18 + 20224879*x^17 + 4629050*x^16 + 12339504*x^15 + 85759609*x^14 + 3804421*x^13 + 229248172*x^12 + 8915595*x^11 + 179709102*x^10 + 277578985*x^9 + 120093874*x^8 + 590929432*x^7 + 16251273*x^6 + 291093237*x^5 + 237370345*x^4 - 94855123*x^3 + 371447631*x^2 - 99193272*x + 97362911)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - x^35 + 22*x^34 - 27*x^33 + 67*x^32 - 207*x^31 - 1315*x^30 - 33*x^29 - 8125*x^28 + 4874*x^27 + 19535*x^26 - 12268*x^25 + 277922*x^24 - 211291*x^23 + 935073*x^22 + 556103*x^21 + 1859369*x^20 + 8410217*x^19 + 1507600*x^18 + 20224879*x^17 + 4629050*x^16 + 12339504*x^15 + 85759609*x^14 + 3804421*x^13 + 229248172*x^12 + 8915595*x^11 + 179709102*x^10 + 277578985*x^9 + 120093874*x^8 + 590929432*x^7 + 16251273*x^6 + 291093237*x^5 + 237370345*x^4 - 94855123*x^3 + 371447631*x^2 - 99193272*x + 97362911, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - x^35 + 22*x^34 - 27*x^33 + 67*x^32 - 207*x^31 - 1315*x^30 - 33*x^29 - 8125*x^28 + 4874*x^27 + 19535*x^26 - 12268*x^25 + 277922*x^24 - 211291*x^23 + 935073*x^22 + 556103*x^21 + 1859369*x^20 + 8410217*x^19 + 1507600*x^18 + 20224879*x^17 + 4629050*x^16 + 12339504*x^15 + 85759609*x^14 + 3804421*x^13 + 229248172*x^12 + 8915595*x^11 + 179709102*x^10 + 277578985*x^9 + 120093874*x^8 + 590929432*x^7 + 16251273*x^6 + 291093237*x^5 + 237370345*x^4 - 94855123*x^3 + 371447631*x^2 - 99193272*x + 97362911);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + 22*x^34 - 27*x^33 + 67*x^32 - 207*x^31 - 1315*x^30 - 33*x^29 - 8125*x^28 + 4874*x^27 + 19535*x^26 - 12268*x^25 + 277922*x^24 - 211291*x^23 + 935073*x^22 + 556103*x^21 + 1859369*x^20 + 8410217*x^19 + 1507600*x^18 + 20224879*x^17 + 4629050*x^16 + 12339504*x^15 + 85759609*x^14 + 3804421*x^13 + 229248172*x^12 + 8915595*x^11 + 179709102*x^10 + 277578985*x^9 + 120093874*x^8 + 590929432*x^7 + 16251273*x^6 + 291093237*x^5 + 237370345*x^4 - 94855123*x^3 + 371447631*x^2 - 99193272*x + 97362911);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$

Intermediate fields

\(\Q(\sqrt{5}) \), 3.3.1369.1, 4.0.171125.1, 6.6.234270125.1, 9.9.3512479453921.1, 12.0.9391766352378611328125.1, 18.18.24096702957455403051316876953125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $36$ $36$ R $36$ ${\href{/padicField/11.3.0.1}{3} }^{12}$ $36$ $36$ ${\href{/padicField/19.9.0.1}{9} }^{4}$ ${\href{/padicField/23.12.0.1}{12} }^{3}$ ${\href{/padicField/29.3.0.1}{3} }^{12}$ ${\href{/padicField/31.2.0.1}{2} }^{18}$ R ${\href{/padicField/41.9.0.1}{9} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{9}$ ${\href{/padicField/47.12.0.1}{12} }^{3}$ $36$ ${\href{/padicField/59.9.0.1}{9} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display Deg $36$$4$$9$$27$
\(37\) Copy content Toggle raw display Deg $36$$18$$2$$34$