Normalized defining polynomial
\( x^{36} - 4 x^{33} + 57 x^{30} - 36 x^{27} + 1910 x^{24} - 2801 x^{21} + 16733 x^{18} + 11446 x^{15} + 36100 x^{12} - 11599 x^{9} + 4932 x^{6} + 69 x^{3} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{18} - \frac{1}{2}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{19} - \frac{1}{2} a$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{20} - \frac{1}{2} a^{2}$, $\frac{1}{4293950} a^{30} + \frac{347274}{2146975} a^{27} - \frac{315588}{2146975} a^{24} - \frac{91341}{858790} a^{21} + \frac{771502}{2146975} a^{18} - \frac{336349}{2146975} a^{15} + \frac{219623}{2146975} a^{12} - \frac{55447}{429395} a^{9} + \frac{619338}{2146975} a^{6} - \frac{1028417}{4293950} a^{3} - \frac{862378}{2146975}$, $\frac{1}{4293950} a^{31} + \frac{347274}{2146975} a^{28} - \frac{315588}{2146975} a^{25} - \frac{91341}{858790} a^{22} + \frac{771502}{2146975} a^{19} - \frac{336349}{2146975} a^{16} + \frac{219623}{2146975} a^{13} - \frac{55447}{429395} a^{10} + \frac{619338}{2146975} a^{7} - \frac{1028417}{4293950} a^{4} - \frac{862378}{2146975} a$, $\frac{1}{4293950} a^{32} + \frac{347274}{2146975} a^{29} - \frac{315588}{2146975} a^{26} - \frac{91341}{858790} a^{23} + \frac{771502}{2146975} a^{20} - \frac{336349}{2146975} a^{17} + \frac{219623}{2146975} a^{14} - \frac{55447}{429395} a^{11} + \frac{619338}{2146975} a^{8} - \frac{1028417}{4293950} a^{5} - \frac{862378}{2146975} a^{2}$, $\frac{1}{138007715940066481523050} a^{33} + \frac{11669894013884477}{138007715940066481523050} a^{30} + \frac{30337311672974609030091}{138007715940066481523050} a^{27} - \frac{36648369119587946883909}{138007715940066481523050} a^{24} + \frac{26087333904991841546709}{138007715940066481523050} a^{21} - \frac{48739560173857978814857}{138007715940066481523050} a^{18} - \frac{6239686167378370064973}{69003857970033240761525} a^{15} - \frac{19670328349779731363943}{69003857970033240761525} a^{12} + \frac{29463569820235797457373}{69003857970033240761525} a^{9} + \frac{27595635152852089265087}{138007715940066481523050} a^{6} + \frac{45049047849282799940651}{138007715940066481523050} a^{3} - \frac{34973552607362147832499}{138007715940066481523050}$, $\frac{1}{138007715940066481523050} a^{34} + \frac{11669894013884477}{138007715940066481523050} a^{31} + \frac{30337311672974609030091}{138007715940066481523050} a^{28} - \frac{36648369119587946883909}{138007715940066481523050} a^{25} + \frac{26087333904991841546709}{138007715940066481523050} a^{22} - \frac{48739560173857978814857}{138007715940066481523050} a^{19} - \frac{6239686167378370064973}{69003857970033240761525} a^{16} - \frac{19670328349779731363943}{69003857970033240761525} a^{13} + \frac{29463569820235797457373}{69003857970033240761525} a^{10} + \frac{27595635152852089265087}{138007715940066481523050} a^{7} + \frac{45049047849282799940651}{138007715940066481523050} a^{4} - \frac{34973552607362147832499}{138007715940066481523050} a$, $\frac{1}{138007715940066481523050} a^{35} + \frac{11669894013884477}{138007715940066481523050} a^{32} + \frac{30337311672974609030091}{138007715940066481523050} a^{29} - \frac{36648369119587946883909}{138007715940066481523050} a^{26} + \frac{26087333904991841546709}{138007715940066481523050} a^{23} - \frac{48739560173857978814857}{138007715940066481523050} a^{20} - \frac{6239686167378370064973}{69003857970033240761525} a^{17} - \frac{19670328349779731363943}{69003857970033240761525} a^{14} + \frac{29463569820235797457373}{69003857970033240761525} a^{11} + \frac{27595635152852089265087}{138007715940066481523050} a^{8} + \frac{45049047849282799940651}{138007715940066481523050} a^{5} - \frac{34973552607362147832499}{138007715940066481523050} a^{2}$
Class group and class number
$C_{182}$, which has order $182$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8006916871000372755411}{138007715940066481523050} a^{34} - \frac{15999036483199363731579}{69003857970033240761525} a^{31} + \frac{456287209308044626763661}{138007715940066481523050} a^{28} - \frac{286609093224317281407519}{138007715940066481523050} a^{25} + \frac{7646400165727391002555862}{69003857970033240761525} a^{22} - \frac{22371357471923176533373497}{138007715940066481523050} a^{19} + \frac{66959328678314239772095592}{69003857970033240761525} a^{16} + \frac{46053764808988543654807637}{69003857970033240761525} a^{13} + \frac{144793583721413369005408378}{69003857970033240761525} a^{10} - \frac{91703548894246182669905423}{138007715940066481523050} a^{7} + \frac{19787860378510520360433823}{69003857970033240761525} a^{4} + \frac{553675180639213151010041}{138007715940066481523050} a \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20980577392492.816 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||