Properties

Label 36.0.147...093.2
Degree $36$
Signature $[0, 18]$
Discriminant $1.477\times 10^{75}$
Root discriminant \(122.47\)
Ramified primes $7,37$
Class number $143883$ (GRH)
Class group [3, 219, 219] (GRH)
Galois group $C_{36}$ (as 36T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + x^34 - 75*x^33 + 75*x^32 - 75*x^31 + 2258*x^30 - 2258*x^29 + 2258*x^28 - 35632*x^27 + 88912*x^26 - 141082*x^25 + 419248*x^24 - 2164168*x^23 + 3786655*x^22 - 5399226*x^21 + 25738866*x^20 - 43636654*x^19 + 45675169*x^18 - 134516572*x^17 + 608277633*x^16 + 210697572*x^15 + 483104635*x^14 - 2456734881*x^13 - 3520305170*x^12 + 4756769209*x^11 + 3056835180*x^10 + 11987996706*x^9 - 16828858702*x^8 - 21147409719*x^7 + 62024124864*x^6 - 77278253614*x^5 + 32045586448*x^4 + 26637733490*x^3 - 23963519122*x^2 - 1001698929*x + 4902414383)
 
gp: K = bnfinit(y^36 - y^35 + y^34 - 75*y^33 + 75*y^32 - 75*y^31 + 2258*y^30 - 2258*y^29 + 2258*y^28 - 35632*y^27 + 88912*y^26 - 141082*y^25 + 419248*y^24 - 2164168*y^23 + 3786655*y^22 - 5399226*y^21 + 25738866*y^20 - 43636654*y^19 + 45675169*y^18 - 134516572*y^17 + 608277633*y^16 + 210697572*y^15 + 483104635*y^14 - 2456734881*y^13 - 3520305170*y^12 + 4756769209*y^11 + 3056835180*y^10 + 11987996706*y^9 - 16828858702*y^8 - 21147409719*y^7 + 62024124864*y^6 - 77278253614*y^5 + 32045586448*y^4 + 26637733490*y^3 - 23963519122*y^2 - 1001698929*y + 4902414383, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - x^35 + x^34 - 75*x^33 + 75*x^32 - 75*x^31 + 2258*x^30 - 2258*x^29 + 2258*x^28 - 35632*x^27 + 88912*x^26 - 141082*x^25 + 419248*x^24 - 2164168*x^23 + 3786655*x^22 - 5399226*x^21 + 25738866*x^20 - 43636654*x^19 + 45675169*x^18 - 134516572*x^17 + 608277633*x^16 + 210697572*x^15 + 483104635*x^14 - 2456734881*x^13 - 3520305170*x^12 + 4756769209*x^11 + 3056835180*x^10 + 11987996706*x^9 - 16828858702*x^8 - 21147409719*x^7 + 62024124864*x^6 - 77278253614*x^5 + 32045586448*x^4 + 26637733490*x^3 - 23963519122*x^2 - 1001698929*x + 4902414383);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + x^34 - 75*x^33 + 75*x^32 - 75*x^31 + 2258*x^30 - 2258*x^29 + 2258*x^28 - 35632*x^27 + 88912*x^26 - 141082*x^25 + 419248*x^24 - 2164168*x^23 + 3786655*x^22 - 5399226*x^21 + 25738866*x^20 - 43636654*x^19 + 45675169*x^18 - 134516572*x^17 + 608277633*x^16 + 210697572*x^15 + 483104635*x^14 - 2456734881*x^13 - 3520305170*x^12 + 4756769209*x^11 + 3056835180*x^10 + 11987996706*x^9 - 16828858702*x^8 - 21147409719*x^7 + 62024124864*x^6 - 77278253614*x^5 + 32045586448*x^4 + 26637733490*x^3 - 23963519122*x^2 - 1001698929*x + 4902414383)
 

\( x^{36} - x^{35} + x^{34} - 75 x^{33} + 75 x^{32} - 75 x^{31} + 2258 x^{30} - 2258 x^{29} + \cdots + 4902414383 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1477111579412686758626382717553525114441635757641876379777829265275342440093\) \(\medspace = 7^{24}\cdot 37^{35}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(122.47\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{2/3}37^{35/36}\approx 122.47269044602223$
Ramified primes:   \(7\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{37}) \)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(259=7\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{259}(1,·)$, $\chi_{259}(134,·)$, $\chi_{259}(135,·)$, $\chi_{259}(8,·)$, $\chi_{259}(25,·)$, $\chi_{259}(29,·)$, $\chi_{259}(30,·)$, $\chi_{259}(162,·)$, $\chi_{259}(36,·)$, $\chi_{259}(165,·)$, $\chi_{259}(39,·)$, $\chi_{259}(43,·)$, $\chi_{259}(44,·)$, $\chi_{259}(114,·)$, $\chi_{259}(46,·)$, $\chi_{259}(53,·)$, $\chi_{259}(64,·)$, $\chi_{259}(198,·)$, $\chi_{259}(200,·)$, $\chi_{259}(79,·)$, $\chi_{259}(207,·)$, $\chi_{259}(211,·)$, $\chi_{259}(85,·)$, $\chi_{259}(219,·)$, $\chi_{259}(93,·)$, $\chi_{259}(95,·)$, $\chi_{259}(226,·)$, $\chi_{259}(102,·)$, $\chi_{259}(232,·)$, $\chi_{259}(107,·)$, $\chi_{259}(109,·)$, $\chi_{259}(240,·)$, $\chi_{259}(242,·)$, $\chi_{259}(123,·)$, $\chi_{259}(253,·)$, $\chi_{259}(254,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{47}a^{24}-\frac{20}{47}a^{23}-\frac{19}{47}a^{22}-\frac{7}{47}a^{21}+\frac{19}{47}a^{20}-\frac{15}{47}a^{19}-\frac{2}{47}a^{18}+\frac{8}{47}a^{17}-\frac{21}{47}a^{16}+\frac{17}{47}a^{15}-\frac{1}{47}a^{14}-\frac{14}{47}a^{13}-\frac{4}{47}a^{12}-\frac{12}{47}a^{11}+\frac{22}{47}a^{10}+\frac{15}{47}a^{9}+\frac{7}{47}a^{8}+\frac{1}{47}a^{7}+\frac{17}{47}a^{6}+\frac{20}{47}a^{5}-\frac{7}{47}a^{4}-\frac{17}{47}a^{3}-\frac{12}{47}a^{2}-\frac{23}{47}a$, $\frac{1}{47}a^{25}+\frac{4}{47}a^{23}-\frac{11}{47}a^{22}+\frac{20}{47}a^{21}-\frac{11}{47}a^{20}-\frac{20}{47}a^{19}+\frac{15}{47}a^{18}-\frac{2}{47}a^{17}+\frac{20}{47}a^{16}+\frac{10}{47}a^{15}+\frac{13}{47}a^{14}-\frac{2}{47}a^{13}+\frac{2}{47}a^{12}+\frac{17}{47}a^{11}-\frac{15}{47}a^{10}-\frac{22}{47}a^{9}-\frac{10}{47}a^{7}-\frac{16}{47}a^{6}+\frac{17}{47}a^{5}-\frac{16}{47}a^{4}-\frac{23}{47}a^{3}+\frac{19}{47}a^{2}+\frac{10}{47}a$, $\frac{1}{47}a^{26}+\frac{22}{47}a^{23}+\frac{2}{47}a^{22}+\frac{17}{47}a^{21}-\frac{2}{47}a^{20}-\frac{19}{47}a^{19}+\frac{6}{47}a^{18}-\frac{12}{47}a^{17}-\frac{8}{47}a^{15}+\frac{2}{47}a^{14}+\frac{11}{47}a^{13}-\frac{14}{47}a^{12}-\frac{14}{47}a^{11}-\frac{16}{47}a^{10}-\frac{13}{47}a^{9}+\frac{9}{47}a^{8}-\frac{20}{47}a^{7}-\frac{4}{47}a^{6}-\frac{2}{47}a^{5}+\frac{5}{47}a^{4}-\frac{7}{47}a^{3}+\frac{11}{47}a^{2}-\frac{2}{47}a$, $\frac{1}{47}a^{27}+\frac{19}{47}a^{23}+\frac{12}{47}a^{22}+\frac{11}{47}a^{21}-\frac{14}{47}a^{20}+\frac{7}{47}a^{19}-\frac{15}{47}a^{18}+\frac{12}{47}a^{17}-\frac{16}{47}a^{16}+\frac{4}{47}a^{15}-\frac{14}{47}a^{14}+\frac{12}{47}a^{13}-\frac{20}{47}a^{12}+\frac{13}{47}a^{11}+\frac{20}{47}a^{10}+\frac{8}{47}a^{9}+\frac{14}{47}a^{8}+\frac{21}{47}a^{7}-\frac{12}{47}a^{5}+\frac{6}{47}a^{4}+\frac{9}{47}a^{3}-\frac{20}{47}a^{2}-\frac{11}{47}a$, $\frac{1}{47}a^{28}+\frac{16}{47}a^{23}-\frac{4}{47}a^{22}-\frac{22}{47}a^{21}+\frac{22}{47}a^{20}-\frac{12}{47}a^{19}+\frac{3}{47}a^{18}+\frac{20}{47}a^{17}-\frac{20}{47}a^{16}-\frac{8}{47}a^{15}-\frac{16}{47}a^{14}+\frac{11}{47}a^{13}-\frac{5}{47}a^{12}+\frac{13}{47}a^{11}+\frac{13}{47}a^{10}+\frac{11}{47}a^{9}-\frac{18}{47}a^{8}-\frac{19}{47}a^{7}-\frac{6}{47}a^{6}+\frac{2}{47}a^{5}+\frac{1}{47}a^{4}+\frac{21}{47}a^{3}-\frac{18}{47}a^{2}+\frac{14}{47}a$, $\frac{1}{47}a^{29}-\frac{13}{47}a^{23}-\frac{7}{47}a^{21}+\frac{13}{47}a^{20}+\frac{8}{47}a^{19}+\frac{5}{47}a^{18}-\frac{7}{47}a^{17}-\frac{1}{47}a^{16}-\frac{6}{47}a^{15}-\frac{20}{47}a^{14}-\frac{16}{47}a^{13}-\frac{17}{47}a^{12}+\frac{17}{47}a^{11}-\frac{12}{47}a^{10}-\frac{23}{47}a^{9}+\frac{10}{47}a^{8}-\frac{22}{47}a^{7}+\frac{12}{47}a^{6}+\frac{10}{47}a^{5}-\frac{8}{47}a^{4}+\frac{19}{47}a^{3}+\frac{18}{47}a^{2}-\frac{8}{47}a$, $\frac{1}{47}a^{30}+\frac{22}{47}a^{23}-\frac{19}{47}a^{22}+\frac{16}{47}a^{21}+\frac{20}{47}a^{20}-\frac{2}{47}a^{19}+\frac{14}{47}a^{18}+\frac{9}{47}a^{17}+\frac{3}{47}a^{16}+\frac{13}{47}a^{15}+\frac{18}{47}a^{14}-\frac{11}{47}a^{13}+\frac{12}{47}a^{12}+\frac{20}{47}a^{11}-\frac{19}{47}a^{10}+\frac{17}{47}a^{9}+\frac{22}{47}a^{8}-\frac{22}{47}a^{7}-\frac{4}{47}a^{6}+\frac{17}{47}a^{5}+\frac{22}{47}a^{4}-\frac{15}{47}a^{3}-\frac{23}{47}a^{2}-\frac{17}{47}a$, $\frac{1}{517}a^{31}+\frac{3}{517}a^{30}+\frac{2}{517}a^{29}-\frac{2}{517}a^{28}+\frac{5}{517}a^{27}+\frac{3}{517}a^{26}+\frac{5}{517}a^{25}-\frac{1}{517}a^{24}+\frac{19}{517}a^{23}+\frac{86}{517}a^{22}+\frac{89}{517}a^{21}+\frac{177}{517}a^{20}+\frac{83}{517}a^{19}-\frac{257}{517}a^{18}-\frac{194}{517}a^{17}-\frac{95}{517}a^{16}+\frac{45}{517}a^{15}+\frac{200}{517}a^{14}-\frac{46}{517}a^{13}+\frac{227}{517}a^{12}-\frac{178}{517}a^{11}-\frac{5}{47}a^{10}-\frac{73}{517}a^{9}+\frac{224}{517}a^{8}-\frac{151}{517}a^{7}+\frac{122}{517}a^{6}-\frac{211}{517}a^{5}-\frac{76}{517}a^{4}+\frac{228}{517}a^{3}+\frac{8}{517}a^{2}-\frac{4}{11}a+\frac{5}{11}$, $\frac{1}{517}a^{32}+\frac{4}{517}a^{30}+\frac{3}{517}a^{29}-\frac{1}{517}a^{27}-\frac{4}{517}a^{26}-\frac{5}{517}a^{25}+\frac{128}{517}a^{23}+\frac{95}{517}a^{22}+\frac{229}{517}a^{21}+\frac{14}{517}a^{20}-\frac{11}{47}a^{19}-\frac{237}{517}a^{18}+\frac{223}{517}a^{17}+\frac{4}{47}a^{16}+\frac{10}{517}a^{15}+\frac{36}{517}a^{14}-\frac{152}{517}a^{13}+\frac{65}{517}a^{12}-\frac{214}{517}a^{11}+\frac{213}{517}a^{10}-\frac{228}{517}a^{9}+\frac{244}{517}a^{8}-\frac{118}{517}a^{7}+\frac{61}{517}a^{6}-\frac{70}{517}a^{5}+\frac{126}{517}a^{4}-\frac{126}{517}a^{3}+\frac{184}{517}a^{2}-\frac{169}{517}a-\frac{4}{11}$, $\frac{1}{3328963}a^{33}+\frac{1897}{3328963}a^{32}-\frac{1291}{3328963}a^{31}+\frac{8722}{3328963}a^{30}-\frac{232}{3328963}a^{29}+\frac{6648}{3328963}a^{28}-\frac{5021}{3328963}a^{27}+\frac{35382}{3328963}a^{26}-\frac{12121}{3328963}a^{25}+\frac{16570}{3328963}a^{24}+\frac{70416}{302633}a^{23}-\frac{76170}{3328963}a^{22}-\frac{1658716}{3328963}a^{21}-\frac{393133}{3328963}a^{20}-\frac{992232}{3328963}a^{19}-\frac{464789}{3328963}a^{18}-\frac{439720}{3328963}a^{17}+\frac{93971}{302633}a^{16}+\frac{564158}{3328963}a^{15}-\frac{1306227}{3328963}a^{14}-\frac{885992}{3328963}a^{13}+\frac{69522}{302633}a^{12}-\frac{748797}{3328963}a^{11}+\frac{806367}{3328963}a^{10}-\frac{269856}{3328963}a^{9}-\frac{390167}{3328963}a^{8}-\frac{141584}{3328963}a^{7}+\frac{632562}{3328963}a^{6}+\frac{205316}{3328963}a^{5}-\frac{260798}{3328963}a^{4}+\frac{1118201}{3328963}a^{3}-\frac{1206673}{3328963}a^{2}+\frac{1472799}{3328963}a+\frac{8003}{70829}$, $\frac{1}{148733343041503}a^{34}+\frac{6248586}{148733343041503}a^{33}-\frac{38040634107}{148733343041503}a^{32}-\frac{409807141}{1085644839719}a^{31}-\frac{31021456646}{148733343041503}a^{30}+\frac{1435092943283}{148733343041503}a^{29}-\frac{446496794695}{148733343041503}a^{28}-\frac{182143543050}{148733343041503}a^{27}-\frac{954628611227}{148733343041503}a^{26}-\frac{743489169785}{148733343041503}a^{25}-\frac{893546218982}{148733343041503}a^{24}+\frac{49219886930389}{148733343041503}a^{23}+\frac{61045976030098}{148733343041503}a^{22}-\frac{55013767913692}{148733343041503}a^{21}-\frac{39791154098}{587878826251}a^{20}-\frac{22878781320831}{148733343041503}a^{19}-\frac{2738337488504}{148733343041503}a^{18}+\frac{71799659729092}{148733343041503}a^{17}-\frac{8749519514155}{148733343041503}a^{16}+\frac{68465227556848}{148733343041503}a^{15}+\frac{1084759691372}{6466667088761}a^{14}-\frac{68726037684721}{148733343041503}a^{13}+\frac{37115277529581}{148733343041503}a^{12}+\frac{6422661677296}{148733343041503}a^{11}+\frac{14925520553938}{148733343041503}a^{10}+\frac{28391201412593}{148733343041503}a^{9}-\frac{52485469516811}{148733343041503}a^{8}-\frac{3291582292683}{148733343041503}a^{7}+\frac{5415134199854}{13521213003773}a^{6}+\frac{44789043852933}{148733343041503}a^{5}-\frac{22590765794865}{148733343041503}a^{4}+\frac{7480375130807}{148733343041503}a^{3}-\frac{47266192210090}{148733343041503}a^{2}-\frac{48310297554675}{148733343041503}a-\frac{1183182375531}{3164539213649}$, $\frac{1}{11\!\cdots\!51}a^{35}-\frac{13\!\cdots\!53}{11\!\cdots\!51}a^{34}-\frac{26\!\cdots\!43}{11\!\cdots\!51}a^{33}-\frac{39\!\cdots\!57}{11\!\cdots\!51}a^{32}-\frac{11\!\cdots\!83}{11\!\cdots\!51}a^{31}-\frac{10\!\cdots\!31}{49\!\cdots\!37}a^{30}-\frac{36\!\cdots\!25}{11\!\cdots\!51}a^{29}+\frac{31\!\cdots\!52}{10\!\cdots\!41}a^{28}+\frac{42\!\cdots\!82}{49\!\cdots\!37}a^{27}-\frac{10\!\cdots\!45}{11\!\cdots\!51}a^{26}+\frac{11\!\cdots\!43}{11\!\cdots\!51}a^{25}+\frac{45\!\cdots\!62}{11\!\cdots\!51}a^{24}+\frac{38\!\cdots\!12}{11\!\cdots\!51}a^{23}+\frac{37\!\cdots\!81}{11\!\cdots\!51}a^{22}-\frac{23\!\cdots\!75}{24\!\cdots\!33}a^{21}-\frac{43\!\cdots\!75}{11\!\cdots\!51}a^{20}+\frac{22\!\cdots\!36}{11\!\cdots\!51}a^{19}-\frac{10\!\cdots\!12}{11\!\cdots\!51}a^{18}-\frac{47\!\cdots\!49}{11\!\cdots\!51}a^{17}-\frac{53\!\cdots\!64}{11\!\cdots\!51}a^{16}-\frac{89\!\cdots\!40}{11\!\cdots\!51}a^{15}+\frac{36\!\cdots\!05}{11\!\cdots\!51}a^{14}-\frac{78\!\cdots\!80}{11\!\cdots\!51}a^{13}-\frac{46\!\cdots\!13}{11\!\cdots\!51}a^{12}+\frac{65\!\cdots\!73}{11\!\cdots\!51}a^{11}-\frac{32\!\cdots\!06}{11\!\cdots\!51}a^{10}-\frac{27\!\cdots\!25}{11\!\cdots\!51}a^{9}-\frac{33\!\cdots\!01}{11\!\cdots\!51}a^{8}-\frac{31\!\cdots\!40}{24\!\cdots\!33}a^{7}-\frac{42\!\cdots\!36}{11\!\cdots\!51}a^{6}+\frac{13\!\cdots\!48}{11\!\cdots\!51}a^{5}+\frac{96\!\cdots\!52}{11\!\cdots\!51}a^{4}-\frac{47\!\cdots\!75}{11\!\cdots\!51}a^{3}+\frac{27\!\cdots\!02}{11\!\cdots\!51}a^{2}+\frac{12\!\cdots\!17}{11\!\cdots\!51}a+\frac{38\!\cdots\!63}{10\!\cdots\!71}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}\times C_{219}\times C_{219}$, which has order $143883$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{80\!\cdots\!97}{59\!\cdots\!29}a^{35}+\frac{46\!\cdots\!47}{59\!\cdots\!29}a^{34}+\frac{66\!\cdots\!36}{59\!\cdots\!29}a^{33}-\frac{59\!\cdots\!31}{59\!\cdots\!29}a^{32}-\frac{33\!\cdots\!94}{59\!\cdots\!29}a^{31}-\frac{49\!\cdots\!89}{59\!\cdots\!29}a^{30}+\frac{17\!\cdots\!89}{59\!\cdots\!29}a^{29}+\frac{98\!\cdots\!16}{59\!\cdots\!29}a^{28}+\frac{14\!\cdots\!15}{59\!\cdots\!29}a^{27}-\frac{27\!\cdots\!24}{59\!\cdots\!29}a^{26}+\frac{28\!\cdots\!10}{59\!\cdots\!29}a^{25}-\frac{40\!\cdots\!59}{59\!\cdots\!29}a^{24}+\frac{21\!\cdots\!82}{54\!\cdots\!39}a^{23}-\frac{13\!\cdots\!79}{59\!\cdots\!29}a^{22}+\frac{15\!\cdots\!52}{12\!\cdots\!07}a^{21}-\frac{17\!\cdots\!21}{59\!\cdots\!29}a^{20}+\frac{16\!\cdots\!69}{59\!\cdots\!29}a^{19}-\frac{69\!\cdots\!42}{59\!\cdots\!29}a^{18}+\frac{85\!\cdots\!62}{59\!\cdots\!29}a^{17}-\frac{85\!\cdots\!97}{59\!\cdots\!29}a^{16}+\frac{35\!\cdots\!79}{59\!\cdots\!29}a^{15}+\frac{80\!\cdots\!57}{59\!\cdots\!29}a^{14}+\frac{11\!\cdots\!61}{54\!\cdots\!39}a^{13}-\frac{79\!\cdots\!60}{59\!\cdots\!29}a^{12}-\frac{51\!\cdots\!36}{59\!\cdots\!29}a^{11}-\frac{31\!\cdots\!08}{59\!\cdots\!29}a^{10}+\frac{29\!\cdots\!03}{59\!\cdots\!29}a^{9}+\frac{15\!\cdots\!87}{59\!\cdots\!29}a^{8}+\frac{76\!\cdots\!34}{59\!\cdots\!29}a^{7}-\frac{21\!\cdots\!67}{59\!\cdots\!29}a^{6}+\frac{12\!\cdots\!59}{59\!\cdots\!29}a^{5}-\frac{15\!\cdots\!84}{59\!\cdots\!29}a^{4}-\frac{22\!\cdots\!84}{59\!\cdots\!29}a^{3}+\frac{11\!\cdots\!11}{59\!\cdots\!29}a^{2}+\frac{14\!\cdots\!98}{59\!\cdots\!29}a+\frac{37\!\cdots\!95}{57\!\cdots\!09}$, $\frac{24\!\cdots\!47}{59\!\cdots\!29}a^{35}+\frac{62\!\cdots\!51}{59\!\cdots\!29}a^{34}+\frac{18\!\cdots\!62}{59\!\cdots\!29}a^{33}-\frac{18\!\cdots\!69}{59\!\cdots\!29}a^{32}-\frac{33\!\cdots\!60}{59\!\cdots\!29}a^{31}-\frac{10\!\cdots\!97}{43\!\cdots\!17}a^{30}+\frac{53\!\cdots\!85}{59\!\cdots\!29}a^{29}+\frac{36\!\cdots\!96}{54\!\cdots\!39}a^{28}+\frac{41\!\cdots\!31}{59\!\cdots\!29}a^{27}-\frac{82\!\cdots\!91}{59\!\cdots\!29}a^{26}+\frac{13\!\cdots\!80}{59\!\cdots\!29}a^{25}-\frac{18\!\cdots\!10}{59\!\cdots\!29}a^{24}+\frac{79\!\cdots\!24}{59\!\cdots\!29}a^{23}-\frac{43\!\cdots\!36}{59\!\cdots\!29}a^{22}+\frac{44\!\cdots\!98}{59\!\cdots\!29}a^{21}-\frac{73\!\cdots\!89}{59\!\cdots\!29}a^{20}+\frac{53\!\cdots\!95}{59\!\cdots\!29}a^{19}-\frac{48\!\cdots\!95}{59\!\cdots\!29}a^{18}+\frac{46\!\cdots\!13}{59\!\cdots\!29}a^{17}-\frac{26\!\cdots\!21}{59\!\cdots\!29}a^{16}+\frac{10\!\cdots\!37}{54\!\cdots\!39}a^{15}+\frac{17\!\cdots\!16}{59\!\cdots\!29}a^{14}+\frac{27\!\cdots\!60}{59\!\cdots\!29}a^{13}-\frac{37\!\cdots\!49}{59\!\cdots\!29}a^{12}-\frac{13\!\cdots\!73}{59\!\cdots\!29}a^{11}-\frac{10\!\cdots\!79}{59\!\cdots\!29}a^{10}+\frac{97\!\cdots\!45}{59\!\cdots\!29}a^{9}+\frac{28\!\cdots\!18}{43\!\cdots\!17}a^{8}-\frac{24\!\cdots\!11}{59\!\cdots\!29}a^{7}-\frac{63\!\cdots\!59}{59\!\cdots\!29}a^{6}+\frac{85\!\cdots\!88}{59\!\cdots\!29}a^{5}-\frac{84\!\cdots\!00}{59\!\cdots\!29}a^{4}-\frac{31\!\cdots\!89}{54\!\cdots\!39}a^{3}+\frac{42\!\cdots\!22}{54\!\cdots\!39}a^{2}+\frac{68\!\cdots\!85}{59\!\cdots\!29}a-\frac{23\!\cdots\!75}{57\!\cdots\!09}$, $\frac{26\!\cdots\!79}{54\!\cdots\!39}a^{35}-\frac{69\!\cdots\!37}{59\!\cdots\!29}a^{34}+\frac{13\!\cdots\!55}{59\!\cdots\!29}a^{33}-\frac{21\!\cdots\!55}{59\!\cdots\!29}a^{32}+\frac{52\!\cdots\!32}{59\!\cdots\!29}a^{31}-\frac{91\!\cdots\!51}{54\!\cdots\!39}a^{30}+\frac{65\!\cdots\!90}{59\!\cdots\!29}a^{29}-\frac{15\!\cdots\!27}{59\!\cdots\!29}a^{28}+\frac{31\!\cdots\!58}{59\!\cdots\!29}a^{27}-\frac{10\!\cdots\!32}{59\!\cdots\!29}a^{26}+\frac{39\!\cdots\!56}{59\!\cdots\!29}a^{25}-\frac{57\!\cdots\!87}{59\!\cdots\!29}a^{24}+\frac{13\!\cdots\!13}{59\!\cdots\!29}a^{23}-\frac{74\!\cdots\!21}{59\!\cdots\!29}a^{22}+\frac{17\!\cdots\!24}{59\!\cdots\!29}a^{21}-\frac{19\!\cdots\!00}{59\!\cdots\!29}a^{20}+\frac{81\!\cdots\!72}{59\!\cdots\!29}a^{19}-\frac{21\!\cdots\!58}{59\!\cdots\!29}a^{18}+\frac{18\!\cdots\!03}{59\!\cdots\!29}a^{17}-\frac{36\!\cdots\!56}{54\!\cdots\!39}a^{16}+\frac{21\!\cdots\!51}{59\!\cdots\!29}a^{15}-\frac{12\!\cdots\!58}{59\!\cdots\!29}a^{14}-\frac{25\!\cdots\!00}{59\!\cdots\!29}a^{13}-\frac{12\!\cdots\!72}{59\!\cdots\!29}a^{12}-\frac{27\!\cdots\!01}{59\!\cdots\!29}a^{11}+\frac{42\!\cdots\!50}{59\!\cdots\!29}a^{10}+\frac{17\!\cdots\!02}{59\!\cdots\!29}a^{9}+\frac{13\!\cdots\!60}{59\!\cdots\!29}a^{8}-\frac{14\!\cdots\!25}{59\!\cdots\!29}a^{7}-\frac{71\!\cdots\!89}{59\!\cdots\!29}a^{6}+\frac{34\!\cdots\!98}{59\!\cdots\!29}a^{5}-\frac{26\!\cdots\!54}{59\!\cdots\!29}a^{4}+\frac{10\!\cdots\!42}{59\!\cdots\!29}a^{3}+\frac{10\!\cdots\!32}{59\!\cdots\!29}a^{2}-\frac{16\!\cdots\!54}{59\!\cdots\!29}a+\frac{40\!\cdots\!48}{57\!\cdots\!09}$, $\frac{10\!\cdots\!66}{59\!\cdots\!29}a^{35}-\frac{23\!\cdots\!90}{59\!\cdots\!29}a^{34}+\frac{79\!\cdots\!91}{59\!\cdots\!29}a^{33}-\frac{81\!\cdots\!86}{59\!\cdots\!29}a^{32}+\frac{18\!\cdots\!38}{59\!\cdots\!29}a^{31}-\frac{59\!\cdots\!50}{59\!\cdots\!29}a^{30}+\frac{24\!\cdots\!79}{59\!\cdots\!29}a^{29}-\frac{58\!\cdots\!11}{59\!\cdots\!29}a^{28}+\frac{18\!\cdots\!73}{59\!\cdots\!29}a^{27}-\frac{37\!\cdots\!56}{59\!\cdots\!29}a^{26}+\frac{68\!\cdots\!66}{59\!\cdots\!29}a^{25}-\frac{89\!\cdots\!86}{54\!\cdots\!39}a^{24}+\frac{37\!\cdots\!15}{59\!\cdots\!29}a^{23}-\frac{18\!\cdots\!00}{54\!\cdots\!39}a^{22}+\frac{25\!\cdots\!68}{59\!\cdots\!29}a^{21}-\frac{37\!\cdots\!21}{59\!\cdots\!29}a^{20}+\frac{25\!\cdots\!41}{59\!\cdots\!29}a^{19}-\frac{28\!\cdots\!00}{59\!\cdots\!29}a^{18}+\frac{26\!\cdots\!65}{59\!\cdots\!29}a^{17}-\frac{26\!\cdots\!79}{12\!\cdots\!07}a^{16}+\frac{57\!\cdots\!30}{59\!\cdots\!29}a^{15}+\frac{67\!\cdots\!99}{59\!\cdots\!29}a^{14}+\frac{10\!\cdots\!71}{59\!\cdots\!29}a^{13}-\frac{20\!\cdots\!32}{59\!\cdots\!29}a^{12}-\frac{53\!\cdots\!37}{59\!\cdots\!29}a^{11}+\frac{10\!\cdots\!42}{59\!\cdots\!29}a^{10}+\frac{47\!\cdots\!05}{59\!\cdots\!29}a^{9}+\frac{16\!\cdots\!47}{59\!\cdots\!29}a^{8}-\frac{64\!\cdots\!91}{59\!\cdots\!29}a^{7}-\frac{28\!\cdots\!56}{59\!\cdots\!29}a^{6}+\frac{47\!\cdots\!57}{59\!\cdots\!29}a^{5}-\frac{42\!\cdots\!38}{59\!\cdots\!29}a^{4}-\frac{11\!\cdots\!42}{59\!\cdots\!29}a^{3}+\frac{22\!\cdots\!43}{59\!\cdots\!29}a^{2}-\frac{21\!\cdots\!56}{59\!\cdots\!29}a-\frac{36\!\cdots\!75}{57\!\cdots\!09}$, $\frac{13\!\cdots\!14}{54\!\cdots\!39}a^{35}-\frac{30\!\cdots\!41}{59\!\cdots\!29}a^{34}+\frac{13\!\cdots\!65}{59\!\cdots\!29}a^{33}-\frac{11\!\cdots\!41}{59\!\cdots\!29}a^{32}+\frac{23\!\cdots\!04}{59\!\cdots\!29}a^{31}-\frac{91\!\cdots\!08}{54\!\cdots\!39}a^{30}+\frac{34\!\cdots\!37}{59\!\cdots\!29}a^{29}-\frac{72\!\cdots\!95}{59\!\cdots\!29}a^{28}+\frac{30\!\cdots\!45}{59\!\cdots\!29}a^{27}-\frac{52\!\cdots\!17}{59\!\cdots\!29}a^{26}+\frac{94\!\cdots\!72}{59\!\cdots\!29}a^{25}-\frac{14\!\cdots\!08}{59\!\cdots\!29}a^{24}+\frac{53\!\cdots\!99}{59\!\cdots\!29}a^{23}-\frac{29\!\cdots\!99}{59\!\cdots\!29}a^{22}+\frac{35\!\cdots\!10}{59\!\cdots\!29}a^{21}-\frac{56\!\cdots\!02}{59\!\cdots\!29}a^{20}+\frac{35\!\cdots\!12}{59\!\cdots\!29}a^{19}-\frac{38\!\cdots\!58}{59\!\cdots\!29}a^{18}+\frac{40\!\cdots\!85}{59\!\cdots\!29}a^{17}-\frac{16\!\cdots\!28}{54\!\cdots\!39}a^{16}+\frac{79\!\cdots\!53}{59\!\cdots\!29}a^{15}+\frac{95\!\cdots\!75}{59\!\cdots\!29}a^{14}+\frac{15\!\cdots\!68}{59\!\cdots\!29}a^{13}-\frac{25\!\cdots\!96}{59\!\cdots\!29}a^{12}-\frac{76\!\cdots\!37}{59\!\cdots\!29}a^{11}+\frac{78\!\cdots\!92}{59\!\cdots\!29}a^{10}+\frac{51\!\cdots\!53}{59\!\cdots\!29}a^{9}+\frac{23\!\cdots\!98}{59\!\cdots\!29}a^{8}-\frac{54\!\cdots\!39}{59\!\cdots\!29}a^{7}-\frac{37\!\cdots\!82}{59\!\cdots\!29}a^{6}+\frac{61\!\cdots\!19}{59\!\cdots\!29}a^{5}-\frac{72\!\cdots\!06}{59\!\cdots\!29}a^{4}-\frac{19\!\cdots\!03}{59\!\cdots\!29}a^{3}+\frac{35\!\cdots\!94}{59\!\cdots\!29}a^{2}-\frac{13\!\cdots\!56}{59\!\cdots\!29}a-\frac{65\!\cdots\!97}{57\!\cdots\!09}$, $\frac{20\!\cdots\!89}{49\!\cdots\!37}a^{35}-\frac{19\!\cdots\!63}{10\!\cdots\!71}a^{34}+\frac{18\!\cdots\!86}{49\!\cdots\!37}a^{33}-\frac{13\!\cdots\!71}{44\!\cdots\!67}a^{32}+\frac{67\!\cdots\!66}{49\!\cdots\!37}a^{31}-\frac{13\!\cdots\!20}{49\!\cdots\!37}a^{30}+\frac{45\!\cdots\!96}{49\!\cdots\!37}a^{29}-\frac{20\!\cdots\!68}{49\!\cdots\!37}a^{28}+\frac{41\!\cdots\!56}{49\!\cdots\!37}a^{27}-\frac{70\!\cdots\!68}{49\!\cdots\!37}a^{26}+\frac{14\!\cdots\!15}{49\!\cdots\!37}a^{25}-\frac{21\!\cdots\!51}{49\!\cdots\!37}a^{24}+\frac{74\!\cdots\!06}{49\!\cdots\!37}a^{23}-\frac{40\!\cdots\!30}{49\!\cdots\!37}a^{22}+\frac{55\!\cdots\!11}{49\!\cdots\!37}a^{21}-\frac{84\!\cdots\!21}{49\!\cdots\!37}a^{20}+\frac{48\!\cdots\!95}{49\!\cdots\!37}a^{19}-\frac{56\!\cdots\!02}{44\!\cdots\!67}a^{18}+\frac{58\!\cdots\!90}{44\!\cdots\!67}a^{17}-\frac{24\!\cdots\!72}{49\!\cdots\!37}a^{16}+\frac{11\!\cdots\!59}{49\!\cdots\!37}a^{15}+\frac{10\!\cdots\!92}{49\!\cdots\!37}a^{14}+\frac{16\!\cdots\!54}{49\!\cdots\!37}a^{13}-\frac{37\!\cdots\!57}{49\!\cdots\!37}a^{12}-\frac{88\!\cdots\!43}{49\!\cdots\!37}a^{11}+\frac{38\!\cdots\!71}{44\!\cdots\!67}a^{10}+\frac{65\!\cdots\!78}{49\!\cdots\!37}a^{9}+\frac{26\!\cdots\!04}{49\!\cdots\!37}a^{8}-\frac{16\!\cdots\!40}{44\!\cdots\!67}a^{7}-\frac{47\!\cdots\!28}{49\!\cdots\!37}a^{6}+\frac{10\!\cdots\!28}{49\!\cdots\!37}a^{5}-\frac{10\!\cdots\!51}{49\!\cdots\!37}a^{4}+\frac{10\!\cdots\!73}{49\!\cdots\!37}a^{3}+\frac{50\!\cdots\!86}{49\!\cdots\!37}a^{2}-\frac{32\!\cdots\!36}{49\!\cdots\!37}a-\frac{14\!\cdots\!20}{46\!\cdots\!77}$, $\frac{53\!\cdots\!13}{49\!\cdots\!37}a^{35}+\frac{25\!\cdots\!92}{49\!\cdots\!37}a^{34}+\frac{58\!\cdots\!72}{49\!\cdots\!37}a^{33}-\frac{38\!\cdots\!32}{49\!\cdots\!37}a^{32}-\frac{19\!\cdots\!18}{49\!\cdots\!37}a^{31}-\frac{39\!\cdots\!94}{49\!\cdots\!37}a^{30}+\frac{10\!\cdots\!42}{49\!\cdots\!37}a^{29}+\frac{56\!\cdots\!90}{49\!\cdots\!37}a^{28}+\frac{95\!\cdots\!16}{49\!\cdots\!37}a^{27}-\frac{15\!\cdots\!09}{49\!\cdots\!37}a^{26}-\frac{58\!\cdots\!53}{49\!\cdots\!37}a^{25}+\frac{10\!\cdots\!53}{49\!\cdots\!37}a^{24}-\frac{25\!\cdots\!16}{49\!\cdots\!37}a^{23}-\frac{13\!\cdots\!50}{49\!\cdots\!37}a^{22}-\frac{37\!\cdots\!17}{49\!\cdots\!37}a^{21}+\frac{36\!\cdots\!94}{49\!\cdots\!37}a^{20}+\frac{44\!\cdots\!60}{49\!\cdots\!37}a^{19}+\frac{97\!\cdots\!14}{10\!\cdots\!71}a^{18}-\frac{47\!\cdots\!05}{49\!\cdots\!37}a^{17}-\frac{14\!\cdots\!14}{49\!\cdots\!37}a^{16}-\frac{10\!\cdots\!74}{49\!\cdots\!37}a^{15}+\frac{16\!\cdots\!56}{49\!\cdots\!37}a^{14}+\frac{23\!\cdots\!26}{49\!\cdots\!37}a^{13}+\frac{14\!\cdots\!10}{49\!\cdots\!37}a^{12}-\frac{75\!\cdots\!87}{49\!\cdots\!37}a^{11}-\frac{30\!\cdots\!88}{10\!\cdots\!71}a^{10}+\frac{37\!\cdots\!87}{44\!\cdots\!67}a^{9}+\frac{21\!\cdots\!93}{49\!\cdots\!37}a^{8}+\frac{40\!\cdots\!37}{49\!\cdots\!37}a^{7}-\frac{51\!\cdots\!60}{10\!\cdots\!71}a^{6}-\frac{57\!\cdots\!90}{49\!\cdots\!37}a^{5}+\frac{81\!\cdots\!33}{49\!\cdots\!37}a^{4}-\frac{10\!\cdots\!79}{49\!\cdots\!37}a^{3}-\frac{19\!\cdots\!90}{49\!\cdots\!37}a^{2}+\frac{94\!\cdots\!46}{49\!\cdots\!37}a-\frac{18\!\cdots\!17}{42\!\cdots\!07}$, $\frac{66\!\cdots\!93}{49\!\cdots\!37}a^{35}-\frac{67\!\cdots\!08}{49\!\cdots\!37}a^{34}-\frac{70\!\cdots\!70}{49\!\cdots\!37}a^{33}-\frac{57\!\cdots\!20}{49\!\cdots\!37}a^{32}+\frac{10\!\cdots\!25}{10\!\cdots\!71}a^{31}+\frac{45\!\cdots\!40}{49\!\cdots\!37}a^{30}+\frac{20\!\cdots\!91}{49\!\cdots\!37}a^{29}-\frac{13\!\cdots\!77}{44\!\cdots\!67}a^{28}-\frac{10\!\cdots\!06}{49\!\cdots\!37}a^{27}-\frac{40\!\cdots\!14}{49\!\cdots\!37}a^{26}+\frac{24\!\cdots\!40}{49\!\cdots\!37}a^{25}-\frac{38\!\cdots\!51}{49\!\cdots\!37}a^{24}+\frac{78\!\cdots\!65}{49\!\cdots\!37}a^{23}-\frac{32\!\cdots\!08}{49\!\cdots\!37}a^{22}+\frac{13\!\cdots\!59}{49\!\cdots\!37}a^{21}-\frac{13\!\cdots\!18}{49\!\cdots\!37}a^{20}+\frac{37\!\cdots\!49}{49\!\cdots\!37}a^{19}-\frac{15\!\cdots\!16}{49\!\cdots\!37}a^{18}+\frac{12\!\cdots\!57}{49\!\cdots\!37}a^{17}-\frac{24\!\cdots\!80}{49\!\cdots\!37}a^{16}+\frac{89\!\cdots\!71}{44\!\cdots\!67}a^{15}-\frac{26\!\cdots\!39}{49\!\cdots\!37}a^{14}-\frac{44\!\cdots\!74}{49\!\cdots\!37}a^{13}-\frac{10\!\cdots\!76}{49\!\cdots\!37}a^{12}+\frac{56\!\cdots\!13}{49\!\cdots\!37}a^{11}+\frac{30\!\cdots\!43}{49\!\cdots\!37}a^{10}+\frac{10\!\cdots\!47}{49\!\cdots\!37}a^{9}+\frac{16\!\cdots\!91}{49\!\cdots\!37}a^{8}-\frac{48\!\cdots\!69}{35\!\cdots\!01}a^{7}-\frac{59\!\cdots\!69}{49\!\cdots\!37}a^{6}+\frac{15\!\cdots\!13}{49\!\cdots\!37}a^{5}-\frac{32\!\cdots\!96}{49\!\cdots\!37}a^{4}+\frac{21\!\cdots\!05}{44\!\cdots\!67}a^{3}+\frac{10\!\cdots\!23}{44\!\cdots\!67}a^{2}-\frac{46\!\cdots\!54}{10\!\cdots\!71}a+\frac{15\!\cdots\!01}{99\!\cdots\!91}$, $\frac{18\!\cdots\!27}{49\!\cdots\!37}a^{35}-\frac{17\!\cdots\!05}{49\!\cdots\!37}a^{34}+\frac{18\!\cdots\!84}{44\!\cdots\!67}a^{33}-\frac{13\!\cdots\!81}{49\!\cdots\!37}a^{32}+\frac{94\!\cdots\!11}{35\!\cdots\!01}a^{31}-\frac{14\!\cdots\!71}{49\!\cdots\!37}a^{30}+\frac{41\!\cdots\!76}{49\!\cdots\!37}a^{29}-\frac{38\!\cdots\!92}{49\!\cdots\!37}a^{28}+\frac{29\!\cdots\!80}{32\!\cdots\!91}a^{27}-\frac{64\!\cdots\!72}{49\!\cdots\!37}a^{26}+\frac{15\!\cdots\!63}{49\!\cdots\!37}a^{25}-\frac{25\!\cdots\!86}{49\!\cdots\!37}a^{24}+\frac{76\!\cdots\!77}{49\!\cdots\!37}a^{23}-\frac{38\!\cdots\!53}{49\!\cdots\!37}a^{22}+\frac{67\!\cdots\!48}{49\!\cdots\!37}a^{21}-\frac{99\!\cdots\!42}{49\!\cdots\!37}a^{20}+\frac{42\!\cdots\!66}{44\!\cdots\!67}a^{19}-\frac{76\!\cdots\!64}{49\!\cdots\!37}a^{18}+\frac{83\!\cdots\!20}{49\!\cdots\!37}a^{17}-\frac{24\!\cdots\!10}{49\!\cdots\!37}a^{16}+\frac{10\!\cdots\!75}{49\!\cdots\!37}a^{15}+\frac{42\!\cdots\!15}{49\!\cdots\!37}a^{14}+\frac{10\!\cdots\!81}{49\!\cdots\!37}a^{13}-\frac{41\!\cdots\!74}{49\!\cdots\!37}a^{12}-\frac{68\!\cdots\!84}{49\!\cdots\!37}a^{11}+\frac{73\!\cdots\!80}{49\!\cdots\!37}a^{10}+\frac{39\!\cdots\!60}{49\!\cdots\!37}a^{9}+\frac{24\!\cdots\!25}{49\!\cdots\!37}a^{8}-\frac{22\!\cdots\!75}{49\!\cdots\!37}a^{7}-\frac{35\!\cdots\!70}{49\!\cdots\!37}a^{6}+\frac{10\!\cdots\!13}{49\!\cdots\!37}a^{5}-\frac{15\!\cdots\!73}{49\!\cdots\!37}a^{4}+\frac{67\!\cdots\!01}{49\!\cdots\!37}a^{3}+\frac{64\!\cdots\!99}{49\!\cdots\!37}a^{2}-\frac{69\!\cdots\!91}{44\!\cdots\!67}a+\frac{30\!\cdots\!33}{46\!\cdots\!77}$, $\frac{71\!\cdots\!82}{49\!\cdots\!37}a^{35}-\frac{74\!\cdots\!95}{49\!\cdots\!37}a^{34}+\frac{56\!\cdots\!27}{49\!\cdots\!37}a^{33}-\frac{53\!\cdots\!61}{49\!\cdots\!37}a^{32}+\frac{53\!\cdots\!02}{44\!\cdots\!67}a^{31}-\frac{42\!\cdots\!37}{49\!\cdots\!37}a^{30}+\frac{15\!\cdots\!56}{49\!\cdots\!37}a^{29}-\frac{19\!\cdots\!10}{49\!\cdots\!37}a^{28}+\frac{12\!\cdots\!37}{49\!\cdots\!37}a^{27}-\frac{24\!\cdots\!69}{49\!\cdots\!37}a^{26}+\frac{41\!\cdots\!28}{49\!\cdots\!37}a^{25}-\frac{60\!\cdots\!56}{49\!\cdots\!37}a^{24}+\frac{24\!\cdots\!54}{49\!\cdots\!37}a^{23}-\frac{13\!\cdots\!41}{49\!\cdots\!37}a^{22}+\frac{14\!\cdots\!53}{49\!\cdots\!37}a^{21}-\frac{23\!\cdots\!21}{49\!\cdots\!37}a^{20}+\frac{16\!\cdots\!94}{49\!\cdots\!37}a^{19}-\frac{16\!\cdots\!45}{49\!\cdots\!37}a^{18}+\frac{16\!\cdots\!34}{49\!\cdots\!37}a^{17}-\frac{80\!\cdots\!10}{49\!\cdots\!37}a^{16}+\frac{26\!\cdots\!75}{35\!\cdots\!01}a^{15}+\frac{48\!\cdots\!78}{49\!\cdots\!37}a^{14}+\frac{73\!\cdots\!89}{49\!\cdots\!37}a^{13}-\frac{11\!\cdots\!32}{49\!\cdots\!37}a^{12}-\frac{78\!\cdots\!11}{10\!\cdots\!71}a^{11}+\frac{11\!\cdots\!96}{49\!\cdots\!37}a^{10}+\frac{27\!\cdots\!58}{49\!\cdots\!37}a^{9}+\frac{11\!\cdots\!80}{49\!\cdots\!37}a^{8}-\frac{19\!\cdots\!06}{49\!\cdots\!37}a^{7}-\frac{17\!\cdots\!25}{49\!\cdots\!37}a^{6}+\frac{58\!\cdots\!34}{10\!\cdots\!71}a^{5}-\frac{26\!\cdots\!03}{44\!\cdots\!67}a^{4}-\frac{59\!\cdots\!33}{49\!\cdots\!37}a^{3}+\frac{15\!\cdots\!59}{49\!\cdots\!37}a^{2}-\frac{18\!\cdots\!49}{49\!\cdots\!37}a-\frac{39\!\cdots\!84}{46\!\cdots\!77}$, $\frac{31\!\cdots\!81}{49\!\cdots\!37}a^{35}+\frac{12\!\cdots\!79}{49\!\cdots\!37}a^{34}+\frac{19\!\cdots\!37}{49\!\cdots\!37}a^{33}-\frac{20\!\cdots\!15}{44\!\cdots\!67}a^{32}-\frac{90\!\cdots\!56}{49\!\cdots\!37}a^{31}-\frac{14\!\cdots\!37}{49\!\cdots\!37}a^{30}+\frac{67\!\cdots\!19}{49\!\cdots\!37}a^{29}+\frac{26\!\cdots\!90}{49\!\cdots\!37}a^{28}+\frac{32\!\cdots\!57}{35\!\cdots\!01}a^{27}-\frac{10\!\cdots\!59}{49\!\cdots\!37}a^{26}+\frac{12\!\cdots\!23}{49\!\cdots\!37}a^{25}-\frac{16\!\cdots\!54}{49\!\cdots\!37}a^{24}+\frac{91\!\cdots\!59}{49\!\cdots\!37}a^{23}-\frac{52\!\cdots\!94}{49\!\cdots\!37}a^{22}+\frac{35\!\cdots\!40}{49\!\cdots\!37}a^{21}-\frac{66\!\cdots\!00}{49\!\cdots\!37}a^{20}+\frac{65\!\cdots\!25}{49\!\cdots\!37}a^{19}-\frac{32\!\cdots\!69}{44\!\cdots\!67}a^{18}+\frac{25\!\cdots\!29}{44\!\cdots\!67}a^{17}-\frac{31\!\cdots\!11}{49\!\cdots\!37}a^{16}+\frac{13\!\cdots\!42}{49\!\cdots\!37}a^{15}+\frac{29\!\cdots\!19}{49\!\cdots\!37}a^{14}+\frac{41\!\cdots\!35}{49\!\cdots\!37}a^{13}-\frac{39\!\cdots\!84}{49\!\cdots\!37}a^{12}-\frac{19\!\cdots\!70}{49\!\cdots\!37}a^{11}-\frac{68\!\cdots\!31}{44\!\cdots\!67}a^{10}+\frac{14\!\cdots\!68}{49\!\cdots\!37}a^{9}+\frac{57\!\cdots\!88}{49\!\cdots\!37}a^{8}+\frac{14\!\cdots\!97}{44\!\cdots\!67}a^{7}-\frac{88\!\cdots\!69}{49\!\cdots\!37}a^{6}+\frac{75\!\cdots\!36}{49\!\cdots\!37}a^{5}-\frac{59\!\cdots\!02}{49\!\cdots\!37}a^{4}-\frac{94\!\cdots\!20}{49\!\cdots\!37}a^{3}+\frac{46\!\cdots\!65}{49\!\cdots\!37}a^{2}+\frac{55\!\cdots\!24}{49\!\cdots\!37}a+\frac{14\!\cdots\!28}{46\!\cdots\!77}$, $\frac{65\!\cdots\!65}{49\!\cdots\!37}a^{35}+\frac{50\!\cdots\!41}{49\!\cdots\!37}a^{34}+\frac{85\!\cdots\!07}{49\!\cdots\!37}a^{33}-\frac{42\!\cdots\!51}{49\!\cdots\!37}a^{32}-\frac{37\!\cdots\!15}{49\!\cdots\!37}a^{31}-\frac{57\!\cdots\!39}{49\!\cdots\!37}a^{30}+\frac{97\!\cdots\!99}{49\!\cdots\!37}a^{29}+\frac{10\!\cdots\!16}{44\!\cdots\!67}a^{28}+\frac{29\!\cdots\!02}{10\!\cdots\!71}a^{27}-\frac{83\!\cdots\!21}{49\!\cdots\!37}a^{26}-\frac{13\!\cdots\!10}{49\!\cdots\!37}a^{25}+\frac{22\!\cdots\!26}{49\!\cdots\!37}a^{24}-\frac{25\!\cdots\!09}{49\!\cdots\!37}a^{23}+\frac{55\!\cdots\!53}{49\!\cdots\!37}a^{22}-\frac{81\!\cdots\!02}{49\!\cdots\!37}a^{21}+\frac{78\!\cdots\!09}{49\!\cdots\!37}a^{20}-\frac{47\!\cdots\!67}{49\!\cdots\!37}a^{19}+\frac{10\!\cdots\!56}{49\!\cdots\!37}a^{18}-\frac{95\!\cdots\!73}{49\!\cdots\!37}a^{17}+\frac{80\!\cdots\!54}{49\!\cdots\!37}a^{16}-\frac{25\!\cdots\!99}{44\!\cdots\!67}a^{15}+\frac{30\!\cdots\!29}{49\!\cdots\!37}a^{14}+\frac{42\!\cdots\!57}{49\!\cdots\!37}a^{13}+\frac{60\!\cdots\!40}{49\!\cdots\!37}a^{12}-\frac{94\!\cdots\!94}{49\!\cdots\!37}a^{11}-\frac{23\!\cdots\!82}{49\!\cdots\!37}a^{10}-\frac{40\!\cdots\!98}{49\!\cdots\!37}a^{9}+\frac{17\!\cdots\!64}{49\!\cdots\!37}a^{8}+\frac{63\!\cdots\!41}{49\!\cdots\!37}a^{7}-\frac{32\!\cdots\!82}{49\!\cdots\!37}a^{6}-\frac{79\!\cdots\!24}{49\!\cdots\!37}a^{5}+\frac{15\!\cdots\!28}{49\!\cdots\!37}a^{4}-\frac{14\!\cdots\!47}{44\!\cdots\!67}a^{3}-\frac{39\!\cdots\!87}{44\!\cdots\!67}a^{2}+\frac{14\!\cdots\!30}{49\!\cdots\!37}a-\frac{69\!\cdots\!09}{46\!\cdots\!77}$, $\frac{55\!\cdots\!77}{49\!\cdots\!37}a^{35}+\frac{64\!\cdots\!65}{49\!\cdots\!37}a^{34}+\frac{85\!\cdots\!45}{49\!\cdots\!37}a^{33}-\frac{40\!\cdots\!38}{49\!\cdots\!37}a^{32}-\frac{47\!\cdots\!87}{49\!\cdots\!37}a^{31}-\frac{63\!\cdots\!99}{49\!\cdots\!37}a^{30}+\frac{12\!\cdots\!33}{49\!\cdots\!37}a^{29}+\frac{14\!\cdots\!76}{49\!\cdots\!37}a^{28}+\frac{18\!\cdots\!26}{49\!\cdots\!37}a^{27}-\frac{18\!\cdots\!76}{49\!\cdots\!37}a^{26}+\frac{80\!\cdots\!61}{49\!\cdots\!37}a^{25}-\frac{21\!\cdots\!72}{44\!\cdots\!67}a^{24}+\frac{16\!\cdots\!67}{49\!\cdots\!37}a^{23}-\frac{75\!\cdots\!74}{44\!\cdots\!67}a^{22}+\frac{17\!\cdots\!19}{49\!\cdots\!37}a^{21}-\frac{13\!\cdots\!14}{49\!\cdots\!37}a^{20}+\frac{11\!\cdots\!32}{49\!\cdots\!37}a^{19}+\frac{19\!\cdots\!99}{49\!\cdots\!37}a^{18}+\frac{72\!\cdots\!53}{49\!\cdots\!37}a^{17}-\frac{61\!\cdots\!73}{49\!\cdots\!37}a^{16}+\frac{20\!\cdots\!47}{49\!\cdots\!37}a^{15}+\frac{67\!\cdots\!83}{49\!\cdots\!37}a^{14}+\frac{13\!\cdots\!72}{49\!\cdots\!37}a^{13}+\frac{94\!\cdots\!34}{49\!\cdots\!37}a^{12}-\frac{83\!\cdots\!30}{10\!\cdots\!71}a^{11}-\frac{49\!\cdots\!46}{49\!\cdots\!37}a^{10}-\frac{23\!\cdots\!26}{49\!\cdots\!37}a^{9}+\frac{13\!\cdots\!20}{49\!\cdots\!37}a^{8}+\frac{14\!\cdots\!09}{49\!\cdots\!37}a^{7}-\frac{10\!\cdots\!71}{49\!\cdots\!37}a^{6}-\frac{74\!\cdots\!61}{49\!\cdots\!37}a^{5}-\frac{80\!\cdots\!73}{22\!\cdots\!93}a^{4}-\frac{46\!\cdots\!18}{49\!\cdots\!37}a^{3}+\frac{10\!\cdots\!43}{49\!\cdots\!37}a^{2}+\frac{52\!\cdots\!49}{49\!\cdots\!37}a-\frac{76\!\cdots\!48}{46\!\cdots\!77}$, $\frac{41\!\cdots\!65}{49\!\cdots\!37}a^{35}-\frac{27\!\cdots\!43}{49\!\cdots\!37}a^{34}+\frac{45\!\cdots\!52}{49\!\cdots\!37}a^{33}-\frac{30\!\cdots\!56}{49\!\cdots\!37}a^{32}+\frac{21\!\cdots\!74}{49\!\cdots\!37}a^{31}-\frac{34\!\cdots\!32}{49\!\cdots\!37}a^{30}+\frac{92\!\cdots\!07}{49\!\cdots\!37}a^{29}-\frac{64\!\cdots\!33}{49\!\cdots\!37}a^{28}+\frac{10\!\cdots\!16}{49\!\cdots\!37}a^{27}-\frac{14\!\cdots\!77}{49\!\cdots\!37}a^{26}+\frac{32\!\cdots\!02}{49\!\cdots\!37}a^{25}-\frac{47\!\cdots\!70}{44\!\cdots\!67}a^{24}+\frac{16\!\cdots\!46}{49\!\cdots\!37}a^{23}-\frac{77\!\cdots\!69}{44\!\cdots\!67}a^{22}+\frac{13\!\cdots\!28}{49\!\cdots\!37}a^{21}-\frac{20\!\cdots\!91}{49\!\cdots\!37}a^{20}+\frac{10\!\cdots\!53}{49\!\cdots\!37}a^{19}-\frac{15\!\cdots\!03}{49\!\cdots\!37}a^{18}+\frac{17\!\cdots\!68}{49\!\cdots\!37}a^{17}-\frac{54\!\cdots\!44}{49\!\cdots\!37}a^{16}+\frac{24\!\cdots\!82}{49\!\cdots\!37}a^{15}+\frac{14\!\cdots\!84}{49\!\cdots\!37}a^{14}+\frac{32\!\cdots\!33}{49\!\cdots\!37}a^{13}-\frac{86\!\cdots\!24}{49\!\cdots\!37}a^{12}-\frac{15\!\cdots\!16}{49\!\cdots\!37}a^{11}+\frac{11\!\cdots\!42}{49\!\cdots\!37}a^{10}+\frac{11\!\cdots\!11}{49\!\cdots\!37}a^{9}+\frac{50\!\cdots\!40}{49\!\cdots\!37}a^{8}-\frac{50\!\cdots\!68}{49\!\cdots\!37}a^{7}-\frac{83\!\cdots\!40}{49\!\cdots\!37}a^{6}+\frac{21\!\cdots\!08}{49\!\cdots\!37}a^{5}-\frac{25\!\cdots\!15}{49\!\cdots\!37}a^{4}+\frac{63\!\cdots\!43}{49\!\cdots\!37}a^{3}+\frac{11\!\cdots\!82}{49\!\cdots\!37}a^{2}-\frac{10\!\cdots\!14}{49\!\cdots\!37}a+\frac{41\!\cdots\!78}{46\!\cdots\!77}$, $\frac{75\!\cdots\!06}{49\!\cdots\!37}a^{35}+\frac{59\!\cdots\!04}{49\!\cdots\!37}a^{34}+\frac{51\!\cdots\!27}{49\!\cdots\!37}a^{33}-\frac{55\!\cdots\!99}{49\!\cdots\!37}a^{32}-\frac{40\!\cdots\!75}{44\!\cdots\!67}a^{31}-\frac{82\!\cdots\!88}{10\!\cdots\!71}a^{30}+\frac{16\!\cdots\!41}{49\!\cdots\!37}a^{29}+\frac{12\!\cdots\!51}{49\!\cdots\!37}a^{28}+\frac{11\!\cdots\!52}{49\!\cdots\!37}a^{27}-\frac{25\!\cdots\!90}{49\!\cdots\!37}a^{26}+\frac{20\!\cdots\!90}{49\!\cdots\!37}a^{25}-\frac{25\!\cdots\!65}{49\!\cdots\!37}a^{24}+\frac{20\!\cdots\!42}{49\!\cdots\!37}a^{23}-\frac{11\!\cdots\!79}{49\!\cdots\!37}a^{22}+\frac{33\!\cdots\!02}{49\!\cdots\!37}a^{21}-\frac{11\!\cdots\!09}{49\!\cdots\!37}a^{20}+\frac{15\!\cdots\!20}{49\!\cdots\!37}a^{19}-\frac{23\!\cdots\!81}{49\!\cdots\!37}a^{18}+\frac{16\!\cdots\!36}{49\!\cdots\!37}a^{17}-\frac{74\!\cdots\!77}{49\!\cdots\!37}a^{16}+\frac{30\!\cdots\!43}{49\!\cdots\!37}a^{15}+\frac{85\!\cdots\!15}{49\!\cdots\!37}a^{14}+\frac{12\!\cdots\!80}{49\!\cdots\!37}a^{13}-\frac{62\!\cdots\!18}{49\!\cdots\!37}a^{12}-\frac{52\!\cdots\!79}{49\!\cdots\!37}a^{11}-\frac{36\!\cdots\!64}{49\!\cdots\!37}a^{10}+\frac{33\!\cdots\!70}{49\!\cdots\!37}a^{9}+\frac{15\!\cdots\!51}{49\!\cdots\!37}a^{8}+\frac{90\!\cdots\!51}{49\!\cdots\!37}a^{7}-\frac{21\!\cdots\!50}{49\!\cdots\!37}a^{6}+\frac{86\!\cdots\!33}{49\!\cdots\!37}a^{5}-\frac{52\!\cdots\!28}{44\!\cdots\!67}a^{4}-\frac{30\!\cdots\!46}{49\!\cdots\!37}a^{3}+\frac{86\!\cdots\!55}{49\!\cdots\!37}a^{2}+\frac{21\!\cdots\!12}{49\!\cdots\!37}a-\frac{90\!\cdots\!09}{46\!\cdots\!77}$, $\frac{50\!\cdots\!04}{49\!\cdots\!37}a^{35}-\frac{58\!\cdots\!56}{49\!\cdots\!37}a^{34}+\frac{43\!\cdots\!97}{49\!\cdots\!37}a^{33}-\frac{34\!\cdots\!06}{44\!\cdots\!67}a^{32}+\frac{46\!\cdots\!15}{49\!\cdots\!37}a^{31}-\frac{32\!\cdots\!28}{49\!\cdots\!37}a^{30}+\frac{11\!\cdots\!70}{49\!\cdots\!37}a^{29}-\frac{15\!\cdots\!51}{49\!\cdots\!37}a^{28}+\frac{97\!\cdots\!03}{49\!\cdots\!37}a^{27}-\frac{17\!\cdots\!10}{49\!\cdots\!37}a^{26}+\frac{29\!\cdots\!98}{49\!\cdots\!37}a^{25}-\frac{44\!\cdots\!03}{49\!\cdots\!37}a^{24}+\frac{17\!\cdots\!13}{49\!\cdots\!37}a^{23}-\frac{94\!\cdots\!91}{49\!\cdots\!37}a^{22}+\frac{10\!\cdots\!28}{49\!\cdots\!37}a^{21}-\frac{17\!\cdots\!49}{49\!\cdots\!37}a^{20}+\frac{11\!\cdots\!49}{49\!\cdots\!37}a^{19}-\frac{10\!\cdots\!17}{44\!\cdots\!67}a^{18}+\frac{11\!\cdots\!57}{44\!\cdots\!67}a^{17}-\frac{57\!\cdots\!76}{49\!\cdots\!37}a^{16}+\frac{25\!\cdots\!59}{49\!\cdots\!37}a^{15}+\frac{33\!\cdots\!85}{49\!\cdots\!37}a^{14}+\frac{53\!\cdots\!29}{49\!\cdots\!37}a^{13}-\frac{79\!\cdots\!77}{49\!\cdots\!37}a^{12}-\frac{25\!\cdots\!71}{49\!\cdots\!37}a^{11}+\frac{15\!\cdots\!45}{44\!\cdots\!67}a^{10}+\frac{17\!\cdots\!58}{49\!\cdots\!37}a^{9}+\frac{75\!\cdots\!98}{49\!\cdots\!37}a^{8}-\frac{17\!\cdots\!76}{44\!\cdots\!67}a^{7}-\frac{12\!\cdots\!59}{49\!\cdots\!37}a^{6}+\frac{20\!\cdots\!05}{49\!\cdots\!37}a^{5}-\frac{20\!\cdots\!76}{49\!\cdots\!37}a^{4}-\frac{36\!\cdots\!08}{49\!\cdots\!37}a^{3}+\frac{10\!\cdots\!03}{49\!\cdots\!37}a^{2}-\frac{19\!\cdots\!20}{49\!\cdots\!37}a-\frac{26\!\cdots\!25}{46\!\cdots\!77}$, $\frac{10\!\cdots\!85}{49\!\cdots\!37}a^{35}+\frac{93\!\cdots\!77}{49\!\cdots\!37}a^{34}+\frac{56\!\cdots\!26}{44\!\cdots\!67}a^{33}-\frac{76\!\cdots\!85}{49\!\cdots\!37}a^{32}-\frac{68\!\cdots\!02}{49\!\cdots\!37}a^{31}-\frac{98\!\cdots\!95}{10\!\cdots\!71}a^{30}+\frac{22\!\cdots\!72}{49\!\cdots\!37}a^{29}+\frac{20\!\cdots\!23}{49\!\cdots\!37}a^{28}+\frac{12\!\cdots\!68}{44\!\cdots\!67}a^{27}-\frac{34\!\cdots\!24}{49\!\cdots\!37}a^{26}+\frac{25\!\cdots\!70}{49\!\cdots\!37}a^{25}-\frac{25\!\cdots\!89}{49\!\cdots\!37}a^{24}+\frac{26\!\cdots\!00}{49\!\cdots\!37}a^{23}-\frac{15\!\cdots\!67}{49\!\cdots\!37}a^{22}+\frac{24\!\cdots\!44}{49\!\cdots\!37}a^{21}-\frac{11\!\cdots\!15}{49\!\cdots\!37}a^{20}+\frac{18\!\cdots\!44}{44\!\cdots\!67}a^{19}-\frac{89\!\cdots\!35}{49\!\cdots\!37}a^{18}-\frac{14\!\cdots\!40}{49\!\cdots\!37}a^{17}-\frac{95\!\cdots\!22}{49\!\cdots\!37}a^{16}+\frac{41\!\cdots\!20}{49\!\cdots\!37}a^{15}+\frac{12\!\cdots\!33}{49\!\cdots\!37}a^{14}+\frac{17\!\cdots\!62}{49\!\cdots\!37}a^{13}-\frac{16\!\cdots\!30}{10\!\cdots\!71}a^{12}-\frac{71\!\cdots\!46}{49\!\cdots\!37}a^{11}-\frac{50\!\cdots\!90}{49\!\cdots\!37}a^{10}+\frac{50\!\cdots\!20}{49\!\cdots\!37}a^{9}+\frac{20\!\cdots\!16}{49\!\cdots\!37}a^{8}+\frac{11\!\cdots\!34}{49\!\cdots\!37}a^{7}-\frac{31\!\cdots\!21}{49\!\cdots\!37}a^{6}+\frac{12\!\cdots\!83}{49\!\cdots\!37}a^{5}+\frac{44\!\cdots\!17}{49\!\cdots\!37}a^{4}-\frac{53\!\cdots\!01}{49\!\cdots\!37}a^{3}+\frac{77\!\cdots\!89}{49\!\cdots\!37}a^{2}+\frac{35\!\cdots\!12}{44\!\cdots\!67}a-\frac{19\!\cdots\!16}{46\!\cdots\!77}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 753515849420102000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 753515849420102000 \cdot 143883}{2\cdot\sqrt{1477111579412686758626382717553525114441635757641876379777829265275342440093}}\cr\approx \mathstrut & 0.328551050036168 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - x^35 + x^34 - 75*x^33 + 75*x^32 - 75*x^31 + 2258*x^30 - 2258*x^29 + 2258*x^28 - 35632*x^27 + 88912*x^26 - 141082*x^25 + 419248*x^24 - 2164168*x^23 + 3786655*x^22 - 5399226*x^21 + 25738866*x^20 - 43636654*x^19 + 45675169*x^18 - 134516572*x^17 + 608277633*x^16 + 210697572*x^15 + 483104635*x^14 - 2456734881*x^13 - 3520305170*x^12 + 4756769209*x^11 + 3056835180*x^10 + 11987996706*x^9 - 16828858702*x^8 - 21147409719*x^7 + 62024124864*x^6 - 77278253614*x^5 + 32045586448*x^4 + 26637733490*x^3 - 23963519122*x^2 - 1001698929*x + 4902414383)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - x^35 + x^34 - 75*x^33 + 75*x^32 - 75*x^31 + 2258*x^30 - 2258*x^29 + 2258*x^28 - 35632*x^27 + 88912*x^26 - 141082*x^25 + 419248*x^24 - 2164168*x^23 + 3786655*x^22 - 5399226*x^21 + 25738866*x^20 - 43636654*x^19 + 45675169*x^18 - 134516572*x^17 + 608277633*x^16 + 210697572*x^15 + 483104635*x^14 - 2456734881*x^13 - 3520305170*x^12 + 4756769209*x^11 + 3056835180*x^10 + 11987996706*x^9 - 16828858702*x^8 - 21147409719*x^7 + 62024124864*x^6 - 77278253614*x^5 + 32045586448*x^4 + 26637733490*x^3 - 23963519122*x^2 - 1001698929*x + 4902414383, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - x^35 + x^34 - 75*x^33 + 75*x^32 - 75*x^31 + 2258*x^30 - 2258*x^29 + 2258*x^28 - 35632*x^27 + 88912*x^26 - 141082*x^25 + 419248*x^24 - 2164168*x^23 + 3786655*x^22 - 5399226*x^21 + 25738866*x^20 - 43636654*x^19 + 45675169*x^18 - 134516572*x^17 + 608277633*x^16 + 210697572*x^15 + 483104635*x^14 - 2456734881*x^13 - 3520305170*x^12 + 4756769209*x^11 + 3056835180*x^10 + 11987996706*x^9 - 16828858702*x^8 - 21147409719*x^7 + 62024124864*x^6 - 77278253614*x^5 + 32045586448*x^4 + 26637733490*x^3 - 23963519122*x^2 - 1001698929*x + 4902414383);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - x^35 + x^34 - 75*x^33 + 75*x^32 - 75*x^31 + 2258*x^30 - 2258*x^29 + 2258*x^28 - 35632*x^27 + 88912*x^26 - 141082*x^25 + 419248*x^24 - 2164168*x^23 + 3786655*x^22 - 5399226*x^21 + 25738866*x^20 - 43636654*x^19 + 45675169*x^18 - 134516572*x^17 + 608277633*x^16 + 210697572*x^15 + 483104635*x^14 - 2456734881*x^13 - 3520305170*x^12 + 4756769209*x^11 + 3056835180*x^10 + 11987996706*x^9 - 16828858702*x^8 - 21147409719*x^7 + 62024124864*x^6 - 77278253614*x^5 + 32045586448*x^4 + 26637733490*x^3 - 23963519122*x^2 - 1001698929*x + 4902414383);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{36}$ (as 36T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 36
The 36 conjugacy class representatives for $C_{36}$
Character table for $C_{36}$ is not computed

Intermediate fields

\(\Q(\sqrt{37}) \), 3.3.1369.1, 4.0.50653.1, 6.6.69343957.1, 9.9.413239695274351729.2, 12.0.177917621779460413.1, 18.18.6318380692766245764071464704595709317.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $36$ $18^{2}$ $36$ R ${\href{/padicField/11.2.0.1}{2} }^{18}$ $36$ $36$ $36$ ${\href{/padicField/23.4.0.1}{4} }^{9}$ ${\href{/padicField/29.12.0.1}{12} }^{3}$ ${\href{/padicField/31.12.0.1}{12} }^{3}$ R $18^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{9}$ ${\href{/padicField/47.1.0.1}{1} }^{36}$ ${\href{/padicField/53.9.0.1}{9} }^{4}$ $36$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.9.6.3$x^{9} - 42 x^{6} - 1372$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$
7.9.6.3$x^{9} - 42 x^{6} - 1372$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$
7.9.6.3$x^{9} - 42 x^{6} - 1372$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$
7.9.6.3$x^{9} - 42 x^{6} - 1372$$3$$3$$6$$C_9$$[\ ]_{3}^{3}$
\(37\) Copy content Toggle raw display Deg $36$$36$$1$$35$