Normalized defining polynomial
\( x^{36} + 66 x^{34} + 1899 x^{32} + 31364 x^{30} + 329559 x^{28} + 2308518 x^{26} + 10994901 x^{24} + 35728458 x^{22} + 78637230 x^{20} + 115641708 x^{18} + 111976572 x^{16} + 70684362 x^{14} + 28999138 x^{12} + 7688325 x^{10} + 1293075 x^{8} + 132111 x^{6} + 7476 x^{4} + 189 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $\frac{1}{53} a^{28} + \frac{13}{53} a^{26} - \frac{4}{53} a^{24} + \frac{2}{53} a^{20} + \frac{6}{53} a^{18} - \frac{7}{53} a^{16} + \frac{22}{53} a^{14} + \frac{16}{53} a^{12} + \frac{1}{53} a^{10} - \frac{12}{53} a^{8} + \frac{19}{53} a^{6} - \frac{24}{53} a^{4} - \frac{8}{53} a^{2} - \frac{25}{53}$, $\frac{1}{53} a^{29} + \frac{13}{53} a^{27} - \frac{4}{53} a^{25} + \frac{2}{53} a^{21} + \frac{6}{53} a^{19} - \frac{7}{53} a^{17} + \frac{22}{53} a^{15} + \frac{16}{53} a^{13} + \frac{1}{53} a^{11} - \frac{12}{53} a^{9} + \frac{19}{53} a^{7} - \frac{24}{53} a^{5} - \frac{8}{53} a^{3} - \frac{25}{53} a$, $\frac{1}{53} a^{30} - \frac{14}{53} a^{26} - \frac{1}{53} a^{24} + \frac{2}{53} a^{22} - \frac{20}{53} a^{20} + \frac{21}{53} a^{18} + \frac{7}{53} a^{16} - \frac{5}{53} a^{14} + \frac{5}{53} a^{12} - \frac{25}{53} a^{10} + \frac{16}{53} a^{8} - \frac{6}{53} a^{6} - \frac{14}{53} a^{4} + \frac{26}{53} a^{2} + \frac{7}{53}$, $\frac{1}{53} a^{31} - \frac{14}{53} a^{27} - \frac{1}{53} a^{25} + \frac{2}{53} a^{23} - \frac{20}{53} a^{21} + \frac{21}{53} a^{19} + \frac{7}{53} a^{17} - \frac{5}{53} a^{15} + \frac{5}{53} a^{13} - \frac{25}{53} a^{11} + \frac{16}{53} a^{9} - \frac{6}{53} a^{7} - \frac{14}{53} a^{5} + \frac{26}{53} a^{3} + \frac{7}{53} a$, $\frac{1}{53} a^{32} + \frac{22}{53} a^{26} - \frac{1}{53} a^{24} - \frac{20}{53} a^{22} - \frac{4}{53} a^{20} - \frac{15}{53} a^{18} + \frac{3}{53} a^{16} - \frac{5}{53} a^{14} - \frac{13}{53} a^{12} - \frac{23}{53} a^{10} - \frac{15}{53} a^{8} - \frac{13}{53} a^{6} + \frac{8}{53} a^{4} + \frac{1}{53} a^{2} + \frac{21}{53}$, $\frac{1}{53} a^{33} + \frac{22}{53} a^{27} - \frac{1}{53} a^{25} - \frac{20}{53} a^{23} - \frac{4}{53} a^{21} - \frac{15}{53} a^{19} + \frac{3}{53} a^{17} - \frac{5}{53} a^{15} - \frac{13}{53} a^{13} - \frac{23}{53} a^{11} - \frac{15}{53} a^{9} - \frac{13}{53} a^{7} + \frac{8}{53} a^{5} + \frac{1}{53} a^{3} + \frac{21}{53} a$, $\frac{1}{47627645614351126040333609718698858653} a^{34} + \frac{385060092666894419836841445863780923}{47627645614351126040333609718698858653} a^{32} - \frac{335709082852599056362848897687665427}{47627645614351126040333609718698858653} a^{30} - \frac{203065593312347055274868365374327878}{47627645614351126040333609718698858653} a^{28} + \frac{22912909058595372891628011995173016551}{47627645614351126040333609718698858653} a^{26} - \frac{16802694538891608488662426890554913190}{47627645614351126040333609718698858653} a^{24} + \frac{8995802178764411942677860534634091995}{47627645614351126040333609718698858653} a^{22} + \frac{15420555374884449955338128387815741098}{47627645614351126040333609718698858653} a^{20} + \frac{10496070157960533169269683215393045591}{47627645614351126040333609718698858653} a^{18} - \frac{16951053928953742057984193722544352405}{47627645614351126040333609718698858653} a^{16} - \frac{12171041619921106962173993947598768442}{47627645614351126040333609718698858653} a^{14} - \frac{8015630782060113203341517721488470248}{47627645614351126040333609718698858653} a^{12} + \frac{19645959090516967005218126728335596670}{47627645614351126040333609718698858653} a^{10} - \frac{22887315403573206972867513232949860555}{47627645614351126040333609718698858653} a^{8} - \frac{14787769669364402439812449341016545717}{47627645614351126040333609718698858653} a^{6} + \frac{13709226887332515280267930868756019085}{47627645614351126040333609718698858653} a^{4} + \frac{4746715704729199305974218564182002332}{47627645614351126040333609718698858653} a^{2} - \frac{5570328814094086494429682492342169639}{47627645614351126040333609718698858653}$, $\frac{1}{47627645614351126040333609718698858653} a^{35} + \frac{385060092666894419836841445863780923}{47627645614351126040333609718698858653} a^{33} - \frac{335709082852599056362848897687665427}{47627645614351126040333609718698858653} a^{31} - \frac{203065593312347055274868365374327878}{47627645614351126040333609718698858653} a^{29} + \frac{22912909058595372891628011995173016551}{47627645614351126040333609718698858653} a^{27} - \frac{16802694538891608488662426890554913190}{47627645614351126040333609718698858653} a^{25} + \frac{8995802178764411942677860534634091995}{47627645614351126040333609718698858653} a^{23} + \frac{15420555374884449955338128387815741098}{47627645614351126040333609718698858653} a^{21} + \frac{10496070157960533169269683215393045591}{47627645614351126040333609718698858653} a^{19} - \frac{16951053928953742057984193722544352405}{47627645614351126040333609718698858653} a^{17} - \frac{12171041619921106962173993947598768442}{47627645614351126040333609718698858653} a^{15} - \frac{8015630782060113203341517721488470248}{47627645614351126040333609718698858653} a^{13} + \frac{19645959090516967005218126728335596670}{47627645614351126040333609718698858653} a^{11} - \frac{22887315403573206972867513232949860555}{47627645614351126040333609718698858653} a^{9} - \frac{14787769669364402439812449341016545717}{47627645614351126040333609718698858653} a^{7} + \frac{13709226887332515280267930868756019085}{47627645614351126040333609718698858653} a^{5} + \frac{4746715704729199305974218564182002332}{47627645614351126040333609718698858653} a^{3} - \frac{5570328814094086494429682492342169639}{47627645614351126040333609718698858653} a$
Class group and class number
$C_{936}\times C_{936}$, which has order $876096$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{749195149491219199743}{630534726674038762237} a^{35} + \frac{49264890649408878897431}{630534726674038762237} a^{33} + \frac{1410742182733092748400454}{630534726674038762237} a^{31} + \frac{23154259172514622529873625}{630534726674038762237} a^{29} + \frac{241256361838291759281330911}{630534726674038762237} a^{27} + \frac{1670546293159551855975576174}{630534726674038762237} a^{25} + \frac{7827576734875697768556950247}{630534726674038762237} a^{23} + \frac{24838854752462209026830995479}{630534726674038762237} a^{21} + \frac{52753326546701508835173786339}{630534726674038762237} a^{19} + \frac{73420312961266711721355136572}{630534726674038762237} a^{17} + \frac{65205404853817539475253905471}{630534726674038762237} a^{15} + \frac{35940153314839751341488004896}{630534726674038762237} a^{13} + \frac{11960879065473313770190126920}{630534726674038762237} a^{11} + \frac{2290566807458779505722607146}{630534726674038762237} a^{9} + \frac{225799277096236679342538870}{630534726674038762237} a^{7} + \frac{7930801479464632737507834}{630534726674038762237} a^{5} - \frac{164570800343422927644771}{630534726674038762237} a^{3} - \frac{9001957169534022418083}{630534726674038762237} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20980577392492.816 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{36}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||