Properties

Label 36.0.14319849782...2304.1
Degree $36$
Signature $[0, 18]$
Discriminant $2^{36}\cdot 37^{34}$
Root discriminant $60.55$
Ramified primes $2, 37$
Class number $130473$ (GRH)
Class group $[130473]$ (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 171, 0, 4845, 0, 54264, 0, 319770, 0, 1144066, 0, 2704156, 0, 4457400, 0, 5311735, 0, 4686825, 0, 3108105, 0, 1560780, 0, 593775, 0, 169911, 0, 35960, 0, 5456, 0, 561, 0, 35, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 35*x^34 + 561*x^32 + 5456*x^30 + 35960*x^28 + 169911*x^26 + 593775*x^24 + 1560780*x^22 + 3108105*x^20 + 4686825*x^18 + 5311735*x^16 + 4457400*x^14 + 2704156*x^12 + 1144066*x^10 + 319770*x^8 + 54264*x^6 + 4845*x^4 + 171*x^2 + 1)
 
gp: K = bnfinit(x^36 + 35*x^34 + 561*x^32 + 5456*x^30 + 35960*x^28 + 169911*x^26 + 593775*x^24 + 1560780*x^22 + 3108105*x^20 + 4686825*x^18 + 5311735*x^16 + 4457400*x^14 + 2704156*x^12 + 1144066*x^10 + 319770*x^8 + 54264*x^6 + 4845*x^4 + 171*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{36} + 35 x^{34} + 561 x^{32} + 5456 x^{30} + 35960 x^{28} + 169911 x^{26} + 593775 x^{24} + 1560780 x^{22} + 3108105 x^{20} + 4686825 x^{18} + 5311735 x^{16} + 4457400 x^{14} + 2704156 x^{12} + 1144066 x^{10} + 319770 x^{8} + 54264 x^{6} + 4845 x^{4} + 171 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14319849782617254182563766395402434634362109577782479558283362304=2^{36}\cdot 37^{34}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(148=2^{2}\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{148}(1,·)$, $\chi_{148}(3,·)$, $\chi_{148}(7,·)$, $\chi_{148}(9,·)$, $\chi_{148}(11,·)$, $\chi_{148}(141,·)$, $\chi_{148}(145,·)$, $\chi_{148}(147,·)$, $\chi_{148}(21,·)$, $\chi_{148}(25,·)$, $\chi_{148}(27,·)$, $\chi_{148}(33,·)$, $\chi_{148}(41,·)$, $\chi_{148}(47,·)$, $\chi_{148}(49,·)$, $\chi_{148}(53,·)$, $\chi_{148}(137,·)$, $\chi_{148}(63,·)$, $\chi_{148}(65,·)$, $\chi_{148}(67,·)$, $\chi_{148}(71,·)$, $\chi_{148}(73,·)$, $\chi_{148}(75,·)$, $\chi_{148}(77,·)$, $\chi_{148}(81,·)$, $\chi_{148}(83,·)$, $\chi_{148}(139,·)$, $\chi_{148}(85,·)$, $\chi_{148}(95,·)$, $\chi_{148}(99,·)$, $\chi_{148}(101,·)$, $\chi_{148}(107,·)$, $\chi_{148}(115,·)$, $\chi_{148}(121,·)$, $\chi_{148}(123,·)$, $\chi_{148}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{130473}$, which has order $130473$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( a^{35} + 34 a^{33} + 528 a^{31} + 4960 a^{29} + 31465 a^{27} + 142506 a^{25} + 475020 a^{23} + 1184040 a^{21} + 2220075 a^{19} + 3124550 a^{17} + 3268760 a^{15} + 2496144 a^{13} + 1352078 a^{11} + 497420 a^{9} + 116280 a^{7} + 15504 a^{5} + 969 a^{3} + 18 a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3171872728760.222 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-37}) \), \(\Q(\sqrt{37}) \), 3.3.1369.1, \(\Q(i, \sqrt{37})\), 6.0.119946304.1, 6.0.4438013248.1, 6.6.69343957.1, 9.9.3512479453921.1, 12.0.19695961589423509504.1, 18.0.3234204723240544858872018632704.1, 18.0.119665574759900159778264689410048.1, \(\Q(\zeta_{37})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{18}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{18}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{4}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
37Data not computed