Normalized defining polynomial
\( x^{36} - 5 x^{27} - 487 x^{18} - 2560 x^{9} + 262144 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{6}{17} a^{9} + \frac{2}{17}$, $\frac{1}{34} a^{19} - \frac{11}{34} a^{10} - \frac{15}{34} a$, $\frac{1}{68} a^{20} + \frac{23}{68} a^{11} - \frac{15}{68} a^{2}$, $\frac{1}{136} a^{21} - \frac{45}{136} a^{12} - \frac{15}{136} a^{3}$, $\frac{1}{272} a^{22} + \frac{91}{272} a^{13} + \frac{121}{272} a^{4}$, $\frac{1}{544} a^{23} + \frac{91}{544} a^{14} + \frac{121}{544} a^{5}$, $\frac{1}{1088} a^{24} - \frac{453}{1088} a^{15} - \frac{423}{1088} a^{6}$, $\frac{1}{2176} a^{25} + \frac{635}{2176} a^{16} + \frac{665}{2176} a^{7}$, $\frac{1}{4352} a^{26} - \frac{1541}{4352} a^{17} - \frac{1511}{4352} a^{8}$, $\frac{1}{4238848} a^{27} + \frac{205}{8704} a^{18} - \frac{2561}{8704} a^{9} + \frac{1943}{8279}$, $\frac{1}{8477696} a^{28} + \frac{205}{17408} a^{19} - \frac{2561}{17408} a^{10} - \frac{3168}{8279} a$, $\frac{1}{16955392} a^{29} + \frac{205}{34816} a^{20} - \frac{2561}{34816} a^{11} + \frac{5111}{16558} a^{2}$, $\frac{1}{33910784} a^{30} + \frac{205}{69632} a^{21} + \frac{32255}{69632} a^{12} + \frac{5111}{33116} a^{3}$, $\frac{1}{67821568} a^{31} + \frac{205}{139264} a^{22} - \frac{37377}{139264} a^{13} - \frac{28005}{66232} a^{4}$, $\frac{1}{135643136} a^{32} + \frac{205}{278528} a^{23} + \frac{101887}{278528} a^{14} + \frac{38227}{132464} a^{5}$, $\frac{1}{271286272} a^{33} + \frac{205}{557056} a^{24} - \frac{176641}{557056} a^{15} - \frac{94237}{264928} a^{6}$, $\frac{1}{542572544} a^{34} + \frac{205}{1114112} a^{25} - \frac{176641}{1114112} a^{16} + \frac{170691}{529856} a^{7}$, $\frac{1}{1085145088} a^{35} + \frac{205}{2228224} a^{26} + \frac{937471}{2228224} a^{17} - \frac{359165}{1059712} a^{8}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4049}{542572544} a^{34} - \frac{93}{1114112} a^{25} + \frac{4049}{1114112} a^{16} + \frac{20245}{1059712} a^{7} \) (order $54$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | R | $18^{2}$ | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | $18^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{4}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||