Normalized defining polynomial
\( x^{36} + 57 x^{32} + 1292 x^{28} + 14839 x^{24} + 91181 x^{20} + 291327 x^{16} + 436088 x^{12} + 246202 x^{8} + 33573 x^{4} + 361 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18}$, $\frac{1}{19} a^{19}$, $\frac{1}{19} a^{20}$, $\frac{1}{19} a^{21}$, $\frac{1}{19} a^{22}$, $\frac{1}{19} a^{23}$, $\frac{1}{19} a^{24}$, $\frac{1}{19} a^{25}$, $\frac{1}{19} a^{26}$, $\frac{1}{19} a^{27}$, $\frac{1}{703} a^{28} + \frac{5}{703} a^{24} - \frac{13}{703} a^{20} + \frac{8}{37} a^{16} - \frac{8}{37} a^{12} - \frac{11}{37} a^{8} - \frac{10}{37} a^{4} - \frac{2}{37}$, $\frac{1}{703} a^{29} + \frac{5}{703} a^{25} - \frac{13}{703} a^{21} + \frac{8}{37} a^{17} - \frac{8}{37} a^{13} - \frac{11}{37} a^{9} - \frac{10}{37} a^{5} - \frac{2}{37} a$, $\frac{1}{703} a^{30} + \frac{5}{703} a^{26} - \frac{13}{703} a^{22} + \frac{4}{703} a^{18} - \frac{8}{37} a^{14} - \frac{11}{37} a^{10} - \frac{10}{37} a^{6} - \frac{2}{37} a^{2}$, $\frac{1}{703} a^{31} + \frac{5}{703} a^{27} - \frac{13}{703} a^{23} + \frac{4}{703} a^{19} - \frac{8}{37} a^{15} - \frac{11}{37} a^{11} - \frac{10}{37} a^{7} - \frac{2}{37} a^{3}$, $\frac{1}{1202291036053231} a^{32} - \frac{360628029338}{1202291036053231} a^{28} + \frac{18071998860342}{1202291036053231} a^{24} + \frac{19263197343064}{1202291036053231} a^{20} + \frac{22374821068296}{63278475581749} a^{16} - \frac{29421940747462}{63278475581749} a^{12} + \frac{6900618736258}{63278475581749} a^{8} + \frac{2796551215897}{63278475581749} a^{4} + \frac{9414536636459}{63278475581749}$, $\frac{1}{1202291036053231} a^{33} - \frac{360628029338}{1202291036053231} a^{29} + \frac{18071998860342}{1202291036053231} a^{25} + \frac{19263197343064}{1202291036053231} a^{21} + \frac{22374821068296}{63278475581749} a^{17} - \frac{29421940747462}{63278475581749} a^{13} + \frac{6900618736258}{63278475581749} a^{9} + \frac{2796551215897}{63278475581749} a^{5} + \frac{9414536636459}{63278475581749} a$, $\frac{1}{1202291036053231} a^{34} - \frac{360628029338}{1202291036053231} a^{30} + \frac{18071998860342}{1202291036053231} a^{26} + \frac{19263197343064}{1202291036053231} a^{22} - \frac{17827728774619}{1202291036053231} a^{18} - \frac{29421940747462}{63278475581749} a^{14} + \frac{6900618736258}{63278475581749} a^{10} + \frac{2796551215897}{63278475581749} a^{6} + \frac{9414536636459}{63278475581749} a^{2}$, $\frac{1}{1202291036053231} a^{35} - \frac{360628029338}{1202291036053231} a^{31} + \frac{18071998860342}{1202291036053231} a^{27} + \frac{19263197343064}{1202291036053231} a^{23} - \frac{17827728774619}{1202291036053231} a^{19} - \frac{29421940747462}{63278475581749} a^{15} + \frac{6900618736258}{63278475581749} a^{11} + \frac{2796551215897}{63278475581749} a^{7} + \frac{9414536636459}{63278475581749} a^{3}$
Class group and class number
$C_{19}\times C_{1026}$, which has order $19494$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{270553808645}{1202291036053231} a^{34} - \frac{15427867616042}{1202291036053231} a^{30} - \frac{349915866100519}{1202291036053231} a^{26} - \frac{4022958387146530}{1202291036053231} a^{22} - \frac{24764481383450907}{1202291036053231} a^{18} - \frac{4179650730230042}{63278475581749} a^{14} - \frac{6312993565535598}{63278475581749} a^{10} - \frac{3675142499306004}{63278475581749} a^{6} - \frac{626229224955623}{63278475581749} a^{2} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 83538158776577.44 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ | R | $18^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{36}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{4}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 19 | Data not computed | ||||||