Properties

Label 36.0.14183457778...0816.2
Degree $36$
Signature $[0, 18]$
Discriminant $2^{72}\cdot 19^{34}$
Root discriminant $64.53$
Ramified primes $2, 19$
Class number $19494$ (GRH)
Class group $[19, 1026]$ (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![361, 0, 0, 0, 33573, 0, 0, 0, 246202, 0, 0, 0, 436088, 0, 0, 0, 291327, 0, 0, 0, 91181, 0, 0, 0, 14839, 0, 0, 0, 1292, 0, 0, 0, 57, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 57*x^32 + 1292*x^28 + 14839*x^24 + 91181*x^20 + 291327*x^16 + 436088*x^12 + 246202*x^8 + 33573*x^4 + 361)
 
gp: K = bnfinit(x^36 + 57*x^32 + 1292*x^28 + 14839*x^24 + 91181*x^20 + 291327*x^16 + 436088*x^12 + 246202*x^8 + 33573*x^4 + 361, 1)
 

Normalized defining polynomial

\( x^{36} + 57 x^{32} + 1292 x^{28} + 14839 x^{24} + 91181 x^{20} + 291327 x^{16} + 436088 x^{12} + 246202 x^{8} + 33573 x^{4} + 361 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(141834577785145976449731181827603110001579056521289025332042530816=2^{72}\cdot 19^{34}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $64.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(152=2^{3}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{152}(1,·)$, $\chi_{152}(3,·)$, $\chi_{152}(7,·)$, $\chi_{152}(9,·)$, $\chi_{152}(13,·)$, $\chi_{152}(17,·)$, $\chi_{152}(147,·)$, $\chi_{152}(21,·)$, $\chi_{152}(23,·)$, $\chi_{152}(25,·)$, $\chi_{152}(27,·)$, $\chi_{152}(29,·)$, $\chi_{152}(37,·)$, $\chi_{152}(39,·)$, $\chi_{152}(47,·)$, $\chi_{152}(49,·)$, $\chi_{152}(51,·)$, $\chi_{152}(53,·)$, $\chi_{152}(137,·)$, $\chi_{152}(59,·)$, $\chi_{152}(63,·)$, $\chi_{152}(67,·)$, $\chi_{152}(69,·)$, $\chi_{152}(73,·)$, $\chi_{152}(55,·)$, $\chi_{152}(141,·)$, $\chi_{152}(81,·)$, $\chi_{152}(75,·)$, $\chi_{152}(87,·)$, $\chi_{152}(91,·)$, $\chi_{152}(107,·)$, $\chi_{152}(109,·)$, $\chi_{152}(111,·)$, $\chi_{152}(117,·)$, $\chi_{152}(119,·)$, $\chi_{152}(121,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18}$, $\frac{1}{19} a^{19}$, $\frac{1}{19} a^{20}$, $\frac{1}{19} a^{21}$, $\frac{1}{19} a^{22}$, $\frac{1}{19} a^{23}$, $\frac{1}{19} a^{24}$, $\frac{1}{19} a^{25}$, $\frac{1}{19} a^{26}$, $\frac{1}{19} a^{27}$, $\frac{1}{703} a^{28} + \frac{5}{703} a^{24} - \frac{13}{703} a^{20} + \frac{8}{37} a^{16} - \frac{8}{37} a^{12} - \frac{11}{37} a^{8} - \frac{10}{37} a^{4} - \frac{2}{37}$, $\frac{1}{703} a^{29} + \frac{5}{703} a^{25} - \frac{13}{703} a^{21} + \frac{8}{37} a^{17} - \frac{8}{37} a^{13} - \frac{11}{37} a^{9} - \frac{10}{37} a^{5} - \frac{2}{37} a$, $\frac{1}{703} a^{30} + \frac{5}{703} a^{26} - \frac{13}{703} a^{22} + \frac{4}{703} a^{18} - \frac{8}{37} a^{14} - \frac{11}{37} a^{10} - \frac{10}{37} a^{6} - \frac{2}{37} a^{2}$, $\frac{1}{703} a^{31} + \frac{5}{703} a^{27} - \frac{13}{703} a^{23} + \frac{4}{703} a^{19} - \frac{8}{37} a^{15} - \frac{11}{37} a^{11} - \frac{10}{37} a^{7} - \frac{2}{37} a^{3}$, $\frac{1}{1202291036053231} a^{32} - \frac{360628029338}{1202291036053231} a^{28} + \frac{18071998860342}{1202291036053231} a^{24} + \frac{19263197343064}{1202291036053231} a^{20} + \frac{22374821068296}{63278475581749} a^{16} - \frac{29421940747462}{63278475581749} a^{12} + \frac{6900618736258}{63278475581749} a^{8} + \frac{2796551215897}{63278475581749} a^{4} + \frac{9414536636459}{63278475581749}$, $\frac{1}{1202291036053231} a^{33} - \frac{360628029338}{1202291036053231} a^{29} + \frac{18071998860342}{1202291036053231} a^{25} + \frac{19263197343064}{1202291036053231} a^{21} + \frac{22374821068296}{63278475581749} a^{17} - \frac{29421940747462}{63278475581749} a^{13} + \frac{6900618736258}{63278475581749} a^{9} + \frac{2796551215897}{63278475581749} a^{5} + \frac{9414536636459}{63278475581749} a$, $\frac{1}{1202291036053231} a^{34} - \frac{360628029338}{1202291036053231} a^{30} + \frac{18071998860342}{1202291036053231} a^{26} + \frac{19263197343064}{1202291036053231} a^{22} - \frac{17827728774619}{1202291036053231} a^{18} - \frac{29421940747462}{63278475581749} a^{14} + \frac{6900618736258}{63278475581749} a^{10} + \frac{2796551215897}{63278475581749} a^{6} + \frac{9414536636459}{63278475581749} a^{2}$, $\frac{1}{1202291036053231} a^{35} - \frac{360628029338}{1202291036053231} a^{31} + \frac{18071998860342}{1202291036053231} a^{27} + \frac{19263197343064}{1202291036053231} a^{23} - \frac{17827728774619}{1202291036053231} a^{19} - \frac{29421940747462}{63278475581749} a^{15} + \frac{6900618736258}{63278475581749} a^{11} + \frac{2796551215897}{63278475581749} a^{7} + \frac{9414536636459}{63278475581749} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{19}\times C_{1026}$, which has order $19494$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{270553808645}{1202291036053231} a^{34} - \frac{15427867616042}{1202291036053231} a^{30} - \frac{349915866100519}{1202291036053231} a^{26} - \frac{4022958387146530}{1202291036053231} a^{22} - \frac{24764481383450907}{1202291036053231} a^{18} - \frac{4179650730230042}{63278475581749} a^{14} - \frac{6312993565535598}{63278475581749} a^{10} - \frac{3675142499306004}{63278475581749} a^{6} - \frac{626229224955623}{63278475581749} a^{2} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 83538158776577.44 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{38}) \), \(\Q(\sqrt{-38}) \), 3.3.361.1, \(\Q(i, \sqrt{38})\), 6.0.8340544.1, 6.6.1267762688.1, 6.0.1267762688.1, \(\Q(\zeta_{19})^+\), 12.0.102862222917439062016.2, 18.0.75613185918270483380568064.1, 18.18.735565072612935262326166126592.1, 18.0.735565072612935262326166126592.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ R $18^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{36}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{4}$ $18^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
19Data not computed