Properties

Label 36.0.14183457778...0816.1
Degree $36$
Signature $[0, 18]$
Discriminant $2^{72}\cdot 19^{34}$
Root discriminant $64.53$
Ramified primes $2, 19$
Class number $175446$ (GRH)
Class group $[171, 1026]$ (GRH)
Galois group $C_2\times C_{18}$ (as 36T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 180, 0, 5325, 0, 61776, 0, 374154, 0, 1365584, 0, 3269436, 0, 5422832, 0, 6463399, 0, 5673268, 0, 3724921, 0, 1844392, 0, 689479, 0, 193312, 0, 39992, 0, 5920, 0, 593, 0, 36, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^36 + 36*x^34 + 593*x^32 + 5920*x^30 + 39992*x^28 + 193312*x^26 + 689479*x^24 + 1844392*x^22 + 3724921*x^20 + 5673268*x^18 + 6463399*x^16 + 5422832*x^14 + 3269436*x^12 + 1365584*x^10 + 374154*x^8 + 61776*x^6 + 5325*x^4 + 180*x^2 + 1)
 
gp: K = bnfinit(x^36 + 36*x^34 + 593*x^32 + 5920*x^30 + 39992*x^28 + 193312*x^26 + 689479*x^24 + 1844392*x^22 + 3724921*x^20 + 5673268*x^18 + 6463399*x^16 + 5422832*x^14 + 3269436*x^12 + 1365584*x^10 + 374154*x^8 + 61776*x^6 + 5325*x^4 + 180*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{36} + 36 x^{34} + 593 x^{32} + 5920 x^{30} + 39992 x^{28} + 193312 x^{26} + 689479 x^{24} + 1844392 x^{22} + 3724921 x^{20} + 5673268 x^{18} + 6463399 x^{16} + 5422832 x^{14} + 3269436 x^{12} + 1365584 x^{10} + 374154 x^{8} + 61776 x^{6} + 5325 x^{4} + 180 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $36$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 18]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(141834577785145976449731181827603110001579056521289025332042530816=2^{72}\cdot 19^{34}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $64.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(152=2^{3}\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{152}(1,·)$, $\chi_{152}(131,·)$, $\chi_{152}(135,·)$, $\chi_{152}(9,·)$, $\chi_{152}(11,·)$, $\chi_{152}(13,·)$, $\chi_{152}(15,·)$, $\chi_{152}(141,·)$, $\chi_{152}(17,·)$, $\chi_{152}(21,·)$, $\chi_{152}(151,·)$, $\chi_{152}(25,·)$, $\chi_{152}(29,·)$, $\chi_{152}(31,·)$, $\chi_{152}(35,·)$, $\chi_{152}(37,·)$, $\chi_{152}(43,·)$, $\chi_{152}(49,·)$, $\chi_{152}(53,·)$, $\chi_{152}(137,·)$, $\chi_{152}(139,·)$, $\chi_{152}(69,·)$, $\chi_{152}(71,·)$, $\chi_{152}(73,·)$, $\chi_{152}(79,·)$, $\chi_{152}(81,·)$, $\chi_{152}(83,·)$, $\chi_{152}(143,·)$, $\chi_{152}(99,·)$, $\chi_{152}(103,·)$, $\chi_{152}(109,·)$, $\chi_{152}(115,·)$, $\chi_{152}(117,·)$, $\chi_{152}(121,·)$, $\chi_{152}(123,·)$, $\chi_{152}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{171}\times C_{1026}$, which has order $175446$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2595333985839.583 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{18}$ (as 36T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_2\times C_{18}$
Character table for $C_2\times C_{18}$ is not computed

Intermediate fields

\(\Q(\sqrt{-38}) \), \(\Q(\sqrt{19}) \), \(\Q(\sqrt{-2}) \), 3.3.361.1, \(\Q(\sqrt{-2}, \sqrt{19})\), 6.0.1267762688.1, 6.6.158470336.1, 6.0.66724352.1, \(\Q(\zeta_{19})^+\), 12.0.102862222917439062016.1, 18.0.735565072612935262326166126592.1, \(\Q(\zeta_{76})^+\), 18.0.38713951190154487490850848768.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }^{4}$ $18^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ $18^{2}$ ${\href{/LocalNumberField/17.9.0.1}{9} }^{4}$ R $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ $18^{2}$ $18^{2}$ $18^{2}$ $18^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
19Data not computed