Normalized defining polynomial
\( x^{36} + 74 x^{34} + 2516 x^{32} + 52096 x^{30} + 734080 x^{28} + 7450912 x^{26} + 56242368 x^{24} + 321384960 x^{22} + 1401903360 x^{20} + 4673011200 x^{18} + 11838295040 x^{16} + 22517596160 x^{14} + 31524634624 x^{12} + 31524634624 x^{10} + 21538570240 x^{8} + 9398648832 x^{6} + 2349662208 x^{4} + 276430848 x^{2} + 9699328 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{16384} a^{28}$, $\frac{1}{16384} a^{29}$, $\frac{1}{32768} a^{30}$, $\frac{1}{32768} a^{31}$, $\frac{1}{65536} a^{32}$, $\frac{1}{65536} a^{33}$, $\frac{1}{131072} a^{34}$, $\frac{1}{131072} a^{35}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 36 |
| The 36 conjugacy class representatives for $C_{36}$ |
| Character table for $C_{36}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.1369.1, 4.0.3241792.1, 6.6.69343957.1, 9.9.3512479453921.1, 12.0.46640037043754870505472.1, \(\Q(\zeta_{37})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{4}$ | $36$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{4}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{12}$ | $36$ | $36$ | $36$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{9}$ | R | $18^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{12}$ | $18^{2}$ | $36$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||