Normalized defining polynomial
\( x^{36} - 29 x^{33} + 584 x^{30} - 5973 x^{27} + 43132 x^{24} - 106620 x^{21} + 146403 x^{18} - 601883 x^{15} + 1334658 x^{12} - 870682 x^{9} + 395165 x^{6} - 324478 x^{3} + 117649 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{7} + \frac{1}{7} a$, $\frac{1}{7} a^{14} + \frac{1}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{10} + \frac{1}{7} a^{4}$, $\frac{1}{7} a^{17} + \frac{1}{7} a^{11} + \frac{1}{7} a^{5}$, $\frac{1}{7} a^{18} + \frac{1}{7} a^{12} + \frac{1}{7} a^{6}$, $\frac{1}{7} a^{19} - \frac{1}{7} a$, $\frac{1}{7} a^{20} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{21} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{22} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{23} - \frac{1}{7} a^{5}$, $\frac{1}{7} a^{24} - \frac{1}{7} a^{6}$, $\frac{1}{7} a^{25} - \frac{1}{7} a^{7}$, $\frac{1}{49} a^{26} + \frac{2}{49} a^{20} + \frac{3}{49} a^{14} + \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{111818} a^{27} - \frac{342}{7987} a^{24} + \frac{2143}{55909} a^{21} + \frac{15}{1141} a^{18} - \frac{2711}{55909} a^{15} + \frac{526}{1141} a^{12} + \frac{52103}{111818} a^{9} - \frac{834}{7987} a^{6} + \frac{5387}{55909} a^{3} + \frac{17}{326}$, $\frac{1}{111818} a^{28} - \frac{342}{7987} a^{25} + \frac{2143}{55909} a^{22} + \frac{15}{1141} a^{19} - \frac{2711}{55909} a^{16} + \frac{37}{1141} a^{13} + \frac{52103}{111818} a^{10} + \frac{3730}{7987} a^{7} + \frac{5387}{55909} a^{4} - \frac{859}{2282} a$, $\frac{1}{111818} a^{29} - \frac{16}{7987} a^{26} + \frac{2143}{55909} a^{23} - \frac{384}{7987} a^{20} - \frac{2711}{55909} a^{17} + \frac{96}{7987} a^{14} + \frac{52103}{111818} a^{11} + \frac{463}{1141} a^{8} + \frac{5387}{55909} a^{5} - \frac{5361}{15974} a^{2}$, $\frac{1}{1229998} a^{30} - \frac{1}{1229998} a^{27} - \frac{28538}{614999} a^{24} - \frac{19993}{614999} a^{21} + \frac{17428}{614999} a^{18} - \frac{12843}{614999} a^{15} + \frac{77975}{1229998} a^{12} + \frac{210985}{1229998} a^{9} - \frac{98437}{614999} a^{6} + \frac{176637}{1229998} a^{3} - \frac{773}{3586}$, $\frac{1}{1229998} a^{31} - \frac{1}{1229998} a^{28} - \frac{28538}{614999} a^{25} - \frac{19993}{614999} a^{22} + \frac{17428}{614999} a^{19} - \frac{12843}{614999} a^{16} + \frac{77975}{1229998} a^{13} + \frac{210985}{1229998} a^{10} - \frac{98437}{614999} a^{7} + \frac{176637}{1229998} a^{4} - \frac{773}{3586} a$, $\frac{1}{1229998} a^{32} - \frac{1}{1229998} a^{29} - \frac{3436}{614999} a^{26} - \frac{19993}{614999} a^{23} - \frac{20225}{614999} a^{20} - \frac{12843}{614999} a^{17} + \frac{52873}{1229998} a^{14} + \frac{210985}{1229998} a^{11} - \frac{136090}{614999} a^{8} + \frac{176637}{1229998} a^{5} - \frac{30705}{175714} a^{2}$, $\frac{1}{10003091365956122868505918} a^{33} - \frac{683584727500597765}{5001545682978061434252959} a^{30} - \frac{25200907808937613}{102072360877103294576591} a^{27} - \frac{355319694561006907468680}{5001545682978061434252959} a^{24} + \frac{17218932248458041171339}{5001545682978061434252959} a^{21} - \frac{279797113814050771078429}{5001545682978061434252959} a^{18} - \frac{714005405218866299399445}{10003091365956122868505918} a^{15} + \frac{1421198072042598669190064}{5001545682978061434252959} a^{12} + \frac{804773194728884013206527}{5001545682978061434252959} a^{9} + \frac{4424990042576261477348779}{10003091365956122868505918} a^{6} - \frac{675600328660426578956065}{5001545682978061434252959} a^{3} + \frac{666463059704291329351}{14581765839586184939513}$, $\frac{1}{70021639561692860079541426} a^{34} - \frac{863616116838377961}{6365603596517532734503766} a^{31} + \frac{47560802498687829209}{35010819780846430039770713} a^{28} + \frac{377111099236523154905821}{35010819780846430039770713} a^{25} - \frac{2486501979579027774695003}{35010819780846430039770713} a^{22} + \frac{1787739509647363966680919}{35010819780846430039770713} a^{19} + \frac{4725895972415935209825455}{70021639561692860079541426} a^{16} + \frac{1103620192160464991128205}{70021639561692860079541426} a^{13} - \frac{4867688236418916126542809}{35010819780846430039770713} a^{10} - \frac{22169678536048552679862469}{70021639561692860079541426} a^{7} - \frac{30404153267825708616066653}{70021639561692860079541426} a^{4} - \frac{39175182700548201709508}{102072360877103294576591} a$, $\frac{1}{490151476931850020556789982} a^{35} - \frac{863616116838377961}{44559225175622729141526362} a^{32} - \frac{578650000428326247948}{245075738465925010278394991} a^{29} - \frac{1626137259326994877919422}{245075738465925010278394991} a^{26} - \frac{168895797946148675136946}{245075738465925010278394991} a^{23} + \frac{15871846678278837576019006}{245075738465925010278394991} a^{20} + \frac{21519617285312598731021881}{490151476931850020556789982} a^{17} + \frac{26571613547202127509103395}{490151476931850020556789982} a^{14} - \frac{102515243580039929233942447}{245075738465925010278394991} a^{11} + \frac{232527788916850028894049827}{490151476931850020556789982} a^{8} + \frac{236188814597474432367520015}{490151476931850020556789982} a^{5} - \frac{166474893066996920537281}{714506526139723062036137} a^{2}$
Class group and class number
$C_{3}\times C_{6}\times C_{42}$, which has order $756$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{923190657524195357}{64955138739974823821467} a^{35} - \frac{376216007488709476203}{909371942359647533500538} a^{32} + \frac{540067001267869045925}{64955138739974823821467} a^{29} - \frac{38645480084335274688870}{454685971179823766750269} a^{26} + \frac{39407404381382012210629}{64955138739974823821467} a^{23} - \frac{656462217340336671701788}{454685971179823766750269} a^{20} + \frac{86292983585252471704543}{64955138739974823821467} a^{17} - \frac{7454330131825724013869939}{909371942359647533500538} a^{14} + \frac{1159233791555800453201708}{64955138739974823821467} a^{11} - \frac{1021065831999859772015020}{454685971179823766750269} a^{8} + \frac{5889749282309807780379}{2651230152652033625366} a^{5} - \frac{205446867111044266614083}{64955138739974823821467} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2007721725946302.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{18}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $19$ | 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |