Normalized defining polynomial
\( x^{36} - 16 x^{33} + 1611 x^{30} + 17456 x^{27} + 1824236 x^{24} - 1408917 x^{21} + 66130813 x^{18} + 80687298 x^{15} + 2089768094 x^{12} - 262040945 x^{9} + 33096582 x^{6} + 5749 x^{3} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{18} - \frac{1}{2}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{19} - \frac{1}{2} a$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{20} - \frac{1}{2} a^{2}$, $\frac{1}{44147300117967142} a^{30} - \frac{9363029901186395}{44147300117967142} a^{27} + \frac{427396293944907}{22073650058983571} a^{24} + \frac{8316871360247821}{44147300117967142} a^{21} - \frac{8634908325083647}{44147300117967142} a^{18} - \frac{4565463109188187}{22073650058983571} a^{15} + \frac{9777836872082155}{22073650058983571} a^{12} + \frac{877819502609860}{22073650058983571} a^{9} + \frac{249545921815734}{22073650058983571} a^{6} + \frac{3969414815587777}{44147300117967142} a^{3} + \frac{3471855785505801}{44147300117967142}$, $\frac{1}{44147300117967142} a^{31} - \frac{9363029901186395}{44147300117967142} a^{28} + \frac{427396293944907}{22073650058983571} a^{25} + \frac{8316871360247821}{44147300117967142} a^{22} - \frac{8634908325083647}{44147300117967142} a^{19} - \frac{4565463109188187}{22073650058983571} a^{16} + \frac{9777836872082155}{22073650058983571} a^{13} + \frac{877819502609860}{22073650058983571} a^{10} + \frac{249545921815734}{22073650058983571} a^{7} + \frac{3969414815587777}{44147300117967142} a^{4} + \frac{3471855785505801}{44147300117967142} a$, $\frac{1}{44147300117967142} a^{32} - \frac{9363029901186395}{44147300117967142} a^{29} + \frac{427396293944907}{22073650058983571} a^{26} + \frac{8316871360247821}{44147300117967142} a^{23} - \frac{8634908325083647}{44147300117967142} a^{20} - \frac{4565463109188187}{22073650058983571} a^{17} + \frac{9777836872082155}{22073650058983571} a^{14} + \frac{877819502609860}{22073650058983571} a^{11} + \frac{249545921815734}{22073650058983571} a^{8} + \frac{3969414815587777}{44147300117967142} a^{5} + \frac{3471855785505801}{44147300117967142} a^{2}$, $\frac{1}{4390281517425555606250289780598925147270305986} a^{33} + \frac{6149397509176430644625779389}{2195140758712777803125144890299462573635152993} a^{30} - \frac{22400052802067584046436452976354645630050332}{2195140758712777803125144890299462573635152993} a^{27} + \frac{416066728899615549660685039696242418801117567}{4390281517425555606250289780598925147270305986} a^{24} - \frac{80994660057181684097410331940768771565137922}{2195140758712777803125144890299462573635152993} a^{21} + \frac{709881917714138706000463285191654916458080927}{2195140758712777803125144890299462573635152993} a^{18} - \frac{1051809413987195039258168368087415825281017390}{2195140758712777803125144890299462573635152993} a^{15} + \frac{1014584599835562728160690877644684248870982849}{2195140758712777803125144890299462573635152993} a^{12} + \frac{574347796546557664588978272974740605258842040}{2195140758712777803125144890299462573635152993} a^{9} - \frac{930509301846344659220123748274030209893469961}{4390281517425555606250289780598925147270305986} a^{6} - \frac{48830985808419896089600036521658457475820376}{2195140758712777803125144890299462573635152993} a^{3} + \frac{393784886398436695286111505174918577463404979}{2195140758712777803125144890299462573635152993}$, $\frac{1}{4390281517425555606250289780598925147270305986} a^{34} + \frac{6149397509176430644625779389}{2195140758712777803125144890299462573635152993} a^{31} - \frac{22400052802067584046436452976354645630050332}{2195140758712777803125144890299462573635152993} a^{28} + \frac{416066728899615549660685039696242418801117567}{4390281517425555606250289780598925147270305986} a^{25} - \frac{80994660057181684097410331940768771565137922}{2195140758712777803125144890299462573635152993} a^{22} + \frac{709881917714138706000463285191654916458080927}{2195140758712777803125144890299462573635152993} a^{19} - \frac{1051809413987195039258168368087415825281017390}{2195140758712777803125144890299462573635152993} a^{16} + \frac{1014584599835562728160690877644684248870982849}{2195140758712777803125144890299462573635152993} a^{13} + \frac{574347796546557664588978272974740605258842040}{2195140758712777803125144890299462573635152993} a^{10} - \frac{930509301846344659220123748274030209893469961}{4390281517425555606250289780598925147270305986} a^{7} - \frac{48830985808419896089600036521658457475820376}{2195140758712777803125144890299462573635152993} a^{4} + \frac{393784886398436695286111505174918577463404979}{2195140758712777803125144890299462573635152993} a$, $\frac{1}{4390281517425555606250289780598925147270305986} a^{35} + \frac{6149397509176430644625779389}{2195140758712777803125144890299462573635152993} a^{32} - \frac{22400052802067584046436452976354645630050332}{2195140758712777803125144890299462573635152993} a^{29} + \frac{416066728899615549660685039696242418801117567}{4390281517425555606250289780598925147270305986} a^{26} - \frac{80994660057181684097410331940768771565137922}{2195140758712777803125144890299462573635152993} a^{23} + \frac{709881917714138706000463285191654916458080927}{2195140758712777803125144890299462573635152993} a^{20} - \frac{1051809413987195039258168368087415825281017390}{2195140758712777803125144890299462573635152993} a^{17} + \frac{1014584599835562728160690877644684248870982849}{2195140758712777803125144890299462573635152993} a^{14} + \frac{574347796546557664588978272974740605258842040}{2195140758712777803125144890299462573635152993} a^{11} - \frac{930509301846344659220123748274030209893469961}{4390281517425555606250289780598925147270305986} a^{8} - \frac{48830985808419896089600036521658457475820376}{2195140758712777803125144890299462573635152993} a^{5} + \frac{393784886398436695286111505174918577463404979}{2195140758712777803125144890299462573635152993} a^{2}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{49860992545937271898506957679336421587}{10477998848271015766707135514555907272721494} a^{34} + \frac{395743368857565118104361967031924941178}{5238999424135507883353567757277953636360747} a^{31} - \frac{40112716047786975483533928283730596542225}{5238999424135507883353567757277953636360747} a^{28} - \frac{2612775353345573035538039206641547837213}{31091984712970373194976663247940377663862} a^{25} - \frac{45534000044497145255408208318403326460889496}{5238999424135507883353567757277953636360747} a^{22} + \frac{29388573674842919300872452126152226399333349}{5238999424135507883353567757277953636360747} a^{19} - \frac{1644242908261703855566475990496841580847736281}{5238999424135507883353567757277953636360747} a^{16} - \frac{2219518059418090038684465689440511523460735973}{5238999424135507883353567757277953636360747} a^{13} - \frac{52352683235575937172342275846879158415173186659}{5238999424135507883353567757277953636360747} a^{10} - \frac{76472027186800349616986364231589579568141451}{10477998848271015766707135514555907272721494} a^{7} - \frac{6641739499855096789313710055052427609090}{5238999424135507883353567757277953636360747} a^{4} - \frac{93895553075212754887595398225008769921115849}{5238999424135507883353567757277953636360747} a \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |