Normalized defining polynomial
\( x^{36} - 6 x^{34} + 27 x^{32} - 109 x^{30} + 417 x^{28} - 1548 x^{26} + 5644 x^{24} - 13098 x^{22} + 29340 x^{20} - 63802 x^{18} + 131850 x^{16} - 246222 x^{14} + 354484 x^{12} - 42756 x^{10} + 5157 x^{8} - 622 x^{6} + 75 x^{4} - 9 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} + \frac{1}{4}$, $\frac{1}{4} a^{15} + \frac{1}{4} a$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{18} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{19} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{20} + \frac{1}{4} a^{6}$, $\frac{1}{4} a^{21} + \frac{1}{4} a^{7}$, $\frac{1}{4} a^{22} + \frac{1}{4} a^{8}$, $\frac{1}{4} a^{23} + \frac{1}{4} a^{9}$, $\frac{1}{4} a^{24} + \frac{1}{4} a^{10}$, $\frac{1}{4} a^{25} + \frac{1}{4} a^{11}$, $\frac{1}{120907588} a^{26} - \frac{156215}{120907588} a^{24} + \frac{5010173}{60453794} a^{22} + \frac{434413}{30226897} a^{20} - \frac{2443030}{30226897} a^{18} + \frac{2746609}{120907588} a^{16} + \frac{2319495}{30226897} a^{14} - \frac{35303995}{120907588} a^{12} + \frac{55767481}{120907588} a^{10} - \frac{26643471}{60453794} a^{8} + \frac{8619925}{30226897} a^{6} - \frac{13776319}{30226897} a^{4} + \frac{43374401}{120907588} a^{2} + \frac{4964999}{30226897}$, $\frac{1}{120907588} a^{27} - \frac{156215}{120907588} a^{25} + \frac{5010173}{60453794} a^{23} + \frac{434413}{30226897} a^{21} - \frac{2443030}{30226897} a^{19} + \frac{2746609}{120907588} a^{17} + \frac{2319495}{30226897} a^{15} - \frac{35303995}{120907588} a^{13} + \frac{55767481}{120907588} a^{11} - \frac{26643471}{60453794} a^{9} + \frac{8619925}{30226897} a^{7} - \frac{13776319}{30226897} a^{5} + \frac{43374401}{120907588} a^{3} + \frac{4964999}{30226897} a$, $\frac{1}{483630352} a^{28} + \frac{17655623}{241815176} a^{14} + \frac{212609133}{483630352}$, $\frac{1}{483630352} a^{29} + \frac{17655623}{241815176} a^{15} + \frac{212609133}{483630352} a$, $\frac{1}{483630352} a^{30} + \frac{17655623}{241815176} a^{16} + \frac{212609133}{483630352} a^{2}$, $\frac{1}{483630352} a^{31} + \frac{17655623}{241815176} a^{17} + \frac{212609133}{483630352} a^{3}$, $\frac{1}{483630352} a^{32} + \frac{17655623}{241815176} a^{18} + \frac{212609133}{483630352} a^{4}$, $\frac{1}{483630352} a^{33} + \frac{17655623}{241815176} a^{19} + \frac{212609133}{483630352} a^{5}$, $\frac{1}{483630352} a^{34} + \frac{17655623}{241815176} a^{20} + \frac{212609133}{483630352} a^{6}$, $\frac{1}{483630352} a^{35} + \frac{17655623}{241815176} a^{21} + \frac{212609133}{483630352} a^{7}$
Class group and class number
$C_{14}\times C_{14}$, which has order $196$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{35525}{483630352} a^{33} - \frac{128801913}{241815176} a^{19} - \frac{95722144749}{483630352} a^{5} \) (order $28$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57365817603378.39 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_6^2$ |
| Character table for $C_6^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||