Normalized defining polynomial
\( x^{36} - 4693 x^{27} + 22286393 x^{18} + 1230241792 x^{9} + 68719476736 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1165} a^{18} + \frac{566}{1165} a^{9} - \frac{19}{1165}$, $\frac{1}{4660} a^{19} + \frac{1731}{4660} a^{10} - \frac{19}{4660} a$, $\frac{1}{18640} a^{20} - \frac{7589}{18640} a^{11} - \frac{4679}{18640} a^{2}$, $\frac{1}{74560} a^{21} + \frac{11051}{74560} a^{12} - \frac{4679}{74560} a^{3}$, $\frac{1}{298240} a^{22} - \frac{138069}{298240} a^{13} + \frac{144441}{298240} a^{4}$, $\frac{1}{1192960} a^{23} + \frac{160171}{1192960} a^{14} + \frac{144441}{1192960} a^{5}$, $\frac{1}{4771840} a^{24} - \frac{1032789}{4771840} a^{15} - \frac{1048519}{4771840} a^{6}$, $\frac{1}{19087360} a^{25} - \frac{5804629}{19087360} a^{16} + \frac{3723321}{19087360} a^{7}$, $\frac{1}{76349440} a^{26} + \frac{32370091}{76349440} a^{17} + \frac{22810681}{76349440} a^{8}$, $\frac{1}{6806214500679680} a^{27} - \frac{23293}{305397760} a^{18} - \frac{122159103}{305397760} a^{9} - \frac{2077090889}{5192729569}$, $\frac{1}{27224858002718720} a^{28} - \frac{23293}{1221591040} a^{19} - \frac{122159103}{1221591040} a^{10} - \frac{2077090889}{20770918276} a$, $\frac{1}{108899432010874880} a^{29} - \frac{23293}{4886364160} a^{20} - \frac{1343750143}{4886364160} a^{11} - \frac{2077090889}{83083673104} a^{2}$, $\frac{1}{435597728043499520} a^{30} - \frac{23293}{19545456640} a^{21} - \frac{6230114303}{19545456640} a^{12} + \frac{164090255319}{332334692416} a^{3}$, $\frac{1}{1742390912173998080} a^{31} - \frac{23293}{78181826560} a^{22} + \frac{32860798977}{78181826560} a^{13} - \frac{168244437097}{1329338769664} a^{4}$, $\frac{1}{6969563648695992320} a^{32} - \frac{23293}{312727306240} a^{23} - \frac{123502854143}{312727306240} a^{14} - \frac{168244437097}{5317355078656} a^{5}$, $\frac{1}{27878254594783969280} a^{33} - \frac{23293}{1250909224960} a^{24} - \frac{123502854143}{1250909224960} a^{15} - \frac{5485599515753}{21269420314624} a^{6}$, $\frac{1}{111513018379135877120} a^{34} - \frac{23293}{5003636899840} a^{25} + \frac{1127406370817}{5003636899840} a^{16} + \frac{15783820798871}{85077681258496} a^{7}$, $\frac{1}{446052073516543508480} a^{35} - \frac{23293}{20014547599360} a^{26} + \frac{6131043270657}{20014547599360} a^{17} - \frac{69293860459625}{340310725033984} a^{8}$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{233059073}{1742390912173998080} a^{31} + \frac{49661}{78181826560} a^{22} - \frac{235418369}{78181826560} a^{13} + \frac{50852864}{25963647845} a^{4} \) (order $54$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{18}$ (as 36T2):
| An abelian group of order 36 |
| The 36 conjugacy class representatives for $C_2\times C_{18}$ |
| Character table for $C_2\times C_{18}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18^{2}$ | R | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{4}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{12}$ | $18^{2}$ | $18^{2}$ | $18^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{6}$ | $18^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{4}$ | $18^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{18}$ | $18^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $17$ | 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |