Properties

Label 36.0.120...625.1
Degree $36$
Signature $[0, 18]$
Discriminant $1.204\times 10^{65}$
Root discriminant \(64.24\)
Ramified primes $3,5,13$
Class number $9604$ (GRH)
Class group [7, 14, 98] (GRH)
Galois group $C_6^2$ (as 36T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^36 - 2*x^33 + 997*x^30 + 13298*x^27 + 969798*x^24 + 5639039*x^21 + 36900263*x^18 - 22224984*x^15 + 40530596*x^12 + 12785625*x^9 + 8883000*x^6 - 359375*x^3 + 15625)
 
gp: K = bnfinit(y^36 - 2*y^33 + 997*y^30 + 13298*y^27 + 969798*y^24 + 5639039*y^21 + 36900263*y^18 - 22224984*y^15 + 40530596*y^12 + 12785625*y^9 + 8883000*y^6 - 359375*y^3 + 15625, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^36 - 2*x^33 + 997*x^30 + 13298*x^27 + 969798*x^24 + 5639039*x^21 + 36900263*x^18 - 22224984*x^15 + 40530596*x^12 + 12785625*x^9 + 8883000*x^6 - 359375*x^3 + 15625);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 2*x^33 + 997*x^30 + 13298*x^27 + 969798*x^24 + 5639039*x^21 + 36900263*x^18 - 22224984*x^15 + 40530596*x^12 + 12785625*x^9 + 8883000*x^6 - 359375*x^3 + 15625)
 

\( x^{36} - 2 x^{33} + 997 x^{30} + 13298 x^{27} + 969798 x^{24} + 5639039 x^{21} + 36900263 x^{18} + \cdots + 15625 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $36$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 18]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(120406044167774900818448125272170303354510035249351535797119140625\) \(\medspace = 3^{54}\cdot 5^{18}\cdot 13^{24}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(64.24\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{3/2}5^{1/2}13^{2/3}\approx 64.23855833492786$
Ramified primes:   \(3\), \(5\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $36$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(585=3^{2}\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{585}(256,·)$, $\chi_{585}(1,·)$, $\chi_{585}(386,·)$, $\chi_{585}(131,·)$, $\chi_{585}(391,·)$, $\chi_{585}(521,·)$, $\chi_{585}(139,·)$, $\chi_{585}(269,·)$, $\chi_{585}(14,·)$, $\chi_{585}(16,·)$, $\chi_{585}(529,·)$, $\chi_{585}(274,·)$, $\chi_{585}(404,·)$, $\chi_{585}(406,·)$, $\chi_{585}(536,·)$, $\chi_{585}(29,·)$, $\chi_{585}(289,·)$, $\chi_{585}(419,·)$, $\chi_{585}(61,·)$, $\chi_{585}(191,·)$, $\chi_{585}(451,·)$, $\chi_{585}(196,·)$, $\chi_{585}(581,·)$, $\chi_{585}(326,·)$, $\chi_{585}(74,·)$, $\chi_{585}(334,·)$, $\chi_{585}(79,·)$, $\chi_{585}(464,·)$, $\chi_{585}(209,·)$, $\chi_{585}(211,·)$, $\chi_{585}(341,·)$, $\chi_{585}(94,·)$, $\chi_{585}(224,·)$, $\chi_{585}(484,·)$, $\chi_{585}(146,·)$, $\chi_{585}(469,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{131072}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{5}a^{26}-\frac{2}{5}a^{23}+\frac{2}{5}a^{20}-\frac{2}{5}a^{17}-\frac{2}{5}a^{14}-\frac{1}{5}a^{11}-\frac{2}{5}a^{8}+\frac{1}{5}a^{5}+\frac{1}{5}a^{2}$, $\frac{1}{10}a^{27}-\frac{1}{5}a^{24}+\frac{1}{5}a^{21}+\frac{3}{10}a^{18}-\frac{1}{5}a^{15}+\frac{2}{5}a^{12}-\frac{1}{5}a^{9}-\frac{2}{5}a^{6}-\frac{2}{5}a^{3}-\frac{1}{2}$, $\frac{1}{50}a^{28}-\frac{1}{25}a^{25}+\frac{11}{25}a^{22}+\frac{23}{50}a^{19}-\frac{1}{25}a^{16}+\frac{7}{25}a^{13}-\frac{6}{25}a^{10}+\frac{8}{25}a^{7}-\frac{2}{25}a^{4}-\frac{1}{2}a$, $\frac{1}{50}a^{29}-\frac{1}{25}a^{26}+\frac{11}{25}a^{23}+\frac{23}{50}a^{20}-\frac{1}{25}a^{17}+\frac{7}{25}a^{14}-\frac{6}{25}a^{11}+\frac{8}{25}a^{8}-\frac{2}{25}a^{5}-\frac{1}{2}a^{2}$, $\frac{1}{302915431422250}a^{30}-\frac{10159252435777}{302915431422250}a^{27}-\frac{601556013021}{1389520327625}a^{24}+\frac{99005872569623}{302915431422250}a^{21}+\frac{141813090777}{607044952750}a^{18}-\frac{22884476969393}{151457715711125}a^{15}+\frac{37335672162019}{151457715711125}a^{12}+\frac{52524973469283}{151457715711125}a^{9}+\frac{65204940794348}{151457715711125}a^{6}+\frac{1132372870229}{12116617256890}a^{3}+\frac{368233796145}{2423323451378}$, $\frac{1}{302915431422250}a^{31}+\frac{1957364821113}{302915431422250}a^{28}+\frac{676802688394}{1389520327625}a^{25}+\frac{62656020798953}{302915431422250}a^{22}+\frac{93249494557}{607044952750}a^{19}-\frac{35001094226283}{151457715711125}a^{16}-\frac{29305722750876}{151457715711125}a^{13}-\frac{20174730072057}{151457715711125}a^{10}+\frac{10680163138343}{151457715711125}a^{7}-\frac{4031429454367}{60583086284450}a^{4}+\frac{368233796145}{2423323451378}a$, $\frac{1}{15\!\cdots\!50}a^{32}-\frac{10159252435777}{15\!\cdots\!50}a^{29}-\frac{601556013021}{6947601638125}a^{26}+\frac{704836735414123}{15\!\cdots\!50}a^{23}+\frac{1355902996277}{3035224763750}a^{20}+\frac{128573238741732}{757288578555625}a^{17}+\frac{340251103584269}{757288578555625}a^{14}+\frac{52524973469283}{757288578555625}a^{11}-\frac{237710490627902}{757288578555625}a^{8}+\frac{1132372870229}{60583086284450}a^{5}+\frac{73646759229}{2423323451378}a^{2}$, $\frac{1}{18\!\cdots\!50}a^{33}-\frac{77\!\cdots\!51}{91\!\cdots\!75}a^{30}+\frac{31\!\cdots\!61}{91\!\cdots\!75}a^{27}+\frac{30\!\cdots\!73}{18\!\cdots\!50}a^{24}-\frac{30\!\cdots\!51}{91\!\cdots\!75}a^{21}+\frac{42\!\cdots\!32}{91\!\cdots\!75}a^{18}-\frac{15\!\cdots\!56}{91\!\cdots\!75}a^{15}-\frac{26\!\cdots\!17}{91\!\cdots\!75}a^{12}-\frac{44\!\cdots\!27}{91\!\cdots\!75}a^{9}-\frac{67\!\cdots\!01}{73\!\cdots\!50}a^{6}+\frac{30\!\cdots\!52}{73\!\cdots\!35}a^{3}+\frac{21\!\cdots\!93}{47\!\cdots\!57}$, $\frac{1}{91\!\cdots\!50}a^{34}-\frac{77\!\cdots\!51}{45\!\cdots\!75}a^{31}+\frac{31\!\cdots\!61}{45\!\cdots\!75}a^{28}+\frac{39\!\cdots\!73}{91\!\cdots\!50}a^{25}-\frac{21\!\cdots\!01}{45\!\cdots\!75}a^{22}+\frac{13\!\cdots\!07}{45\!\cdots\!75}a^{19}+\frac{16\!\cdots\!94}{45\!\cdots\!75}a^{16}-\frac{26\!\cdots\!17}{45\!\cdots\!75}a^{13}+\frac{13\!\cdots\!23}{45\!\cdots\!75}a^{10}-\frac{15\!\cdots\!01}{36\!\cdots\!50}a^{7}+\frac{30\!\cdots\!52}{36\!\cdots\!75}a^{4}+\frac{99\!\cdots\!10}{47\!\cdots\!57}a$, $\frac{1}{91\!\cdots\!50}a^{35}-\frac{77\!\cdots\!51}{45\!\cdots\!75}a^{32}+\frac{31\!\cdots\!61}{45\!\cdots\!75}a^{29}+\frac{30\!\cdots\!73}{91\!\cdots\!50}a^{26}+\frac{15\!\cdots\!99}{45\!\cdots\!75}a^{23}+\frac{22\!\cdots\!82}{45\!\cdots\!75}a^{20}+\frac{76\!\cdots\!19}{45\!\cdots\!75}a^{17}-\frac{11\!\cdots\!92}{45\!\cdots\!75}a^{14}-\frac{13\!\cdots\!02}{45\!\cdots\!75}a^{11}+\frac{14\!\cdots\!99}{36\!\cdots\!50}a^{8}-\frac{11\!\cdots\!18}{36\!\cdots\!75}a^{5}-\frac{45\!\cdots\!64}{23\!\cdots\!85}a^{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{7}\times C_{14}\times C_{98}$, which has order $9604$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{70234324305228434953808927601019626}{60768741268314024842550644531449706073125} a^{35} - \frac{181219211472720127626919497364975002}{60768741268314024842550644531449706073125} a^{32} + \frac{140205173144562333481843384156663813869}{121537482536628049685101289062899412146250} a^{29} + \frac{893352142819922892919504981518900696798}{60768741268314024842550644531449706073125} a^{26} + \frac{67568679854157333224200478844806972253798}{60768741268314024842550644531449706073125} a^{23} + \frac{712999789831863228735665272437686392403953}{121537482536628049685101289062899412146250} a^{20} + \frac{2359403469088100305249440189904429426523388}{60768741268314024842550644531449706073125} a^{17} - \frac{28253203359376402484622059730920744813376}{557511387782697475619730683774767945625} a^{14} + \frac{3655530029568538385363200255108371758143221}{60768741268314024842550644531449706073125} a^{11} - \frac{5756313417307213147633343950389469625406}{486149930146512198740405156251597648585} a^{8} + \frac{46600553649166691188562635272705338850}{97229986029302439748081031250319529717} a^{5} - \frac{8224755265625072224103500533884292642361}{972299860293024397480810312503195297170} a^{2} \)  (order $18$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{41\!\cdots\!77}{91\!\cdots\!50}a^{34}-\frac{53\!\cdots\!02}{45\!\cdots\!75}a^{31}+\frac{20\!\cdots\!72}{45\!\cdots\!75}a^{28}+\frac{53\!\cdots\!71}{91\!\cdots\!50}a^{25}+\frac{20\!\cdots\!73}{45\!\cdots\!75}a^{22}+\frac{10\!\cdots\!89}{45\!\cdots\!75}a^{19}+\frac{69\!\cdots\!13}{45\!\cdots\!75}a^{16}-\frac{83\!\cdots\!26}{42\!\cdots\!75}a^{13}+\frac{10\!\cdots\!46}{45\!\cdots\!75}a^{10}-\frac{34\!\cdots\!37}{73\!\cdots\!50}a^{7}+\frac{27\!\cdots\!45}{14\!\cdots\!67}a^{4}-\frac{26\!\cdots\!12}{14\!\cdots\!67}a$, $\frac{70\!\cdots\!26}{60\!\cdots\!25}a^{35}-\frac{21\!\cdots\!98}{30\!\cdots\!25}a^{34}-\frac{18\!\cdots\!02}{60\!\cdots\!25}a^{32}+\frac{11\!\cdots\!67}{60\!\cdots\!50}a^{31}+\frac{14\!\cdots\!69}{12\!\cdots\!50}a^{29}-\frac{42\!\cdots\!87}{60\!\cdots\!50}a^{28}+\frac{89\!\cdots\!98}{60\!\cdots\!25}a^{26}-\frac{27\!\cdots\!04}{30\!\cdots\!25}a^{25}+\frac{67\!\cdots\!98}{60\!\cdots\!25}a^{23}-\frac{40\!\cdots\!83}{60\!\cdots\!50}a^{22}+\frac{71\!\cdots\!53}{12\!\cdots\!50}a^{20}-\frac{21\!\cdots\!19}{60\!\cdots\!50}a^{19}+\frac{23\!\cdots\!88}{60\!\cdots\!25}a^{17}-\frac{71\!\cdots\!74}{30\!\cdots\!25}a^{16}-\frac{28\!\cdots\!76}{55\!\cdots\!25}a^{14}+\frac{85\!\cdots\!98}{27\!\cdots\!25}a^{13}+\frac{36\!\cdots\!21}{60\!\cdots\!25}a^{11}-\frac{11\!\cdots\!83}{30\!\cdots\!25}a^{10}-\frac{57\!\cdots\!06}{48\!\cdots\!85}a^{8}+\frac{17\!\cdots\!63}{24\!\cdots\!25}a^{7}+\frac{46\!\cdots\!50}{97\!\cdots\!17}a^{5}-\frac{56\!\cdots\!45}{19\!\cdots\!34}a^{4}-\frac{82\!\cdots\!61}{97\!\cdots\!70}a^{2}+\frac{56\!\cdots\!95}{19\!\cdots\!34}a$, $\frac{25\!\cdots\!27}{12\!\cdots\!50}a^{35}+\frac{45\!\cdots\!71}{60\!\cdots\!50}a^{34}-\frac{10\!\cdots\!91}{24\!\cdots\!50}a^{32}-\frac{91\!\cdots\!67}{60\!\cdots\!50}a^{31}+\frac{12\!\cdots\!23}{60\!\cdots\!25}a^{29}+\frac{45\!\cdots\!87}{60\!\cdots\!50}a^{28}+\frac{34\!\cdots\!49}{12\!\cdots\!50}a^{26}+\frac{60\!\cdots\!33}{60\!\cdots\!50}a^{25}+\frac{24\!\cdots\!23}{12\!\cdots\!50}a^{23}+\frac{44\!\cdots\!83}{60\!\cdots\!50}a^{22}+\frac{14\!\cdots\!93}{12\!\cdots\!25}a^{20}+\frac{25\!\cdots\!19}{60\!\cdots\!50}a^{19}+\frac{47\!\cdots\!06}{60\!\cdots\!25}a^{17}+\frac{84\!\cdots\!24}{30\!\cdots\!25}a^{16}-\frac{26\!\cdots\!53}{60\!\cdots\!25}a^{14}-\frac{51\!\cdots\!57}{30\!\cdots\!25}a^{13}+\frac{50\!\cdots\!63}{60\!\cdots\!25}a^{11}+\frac{93\!\cdots\!08}{30\!\cdots\!25}a^{10}+\frac{37\!\cdots\!79}{12\!\cdots\!50}a^{8}+\frac{44\!\cdots\!73}{48\!\cdots\!50}a^{7}+\frac{18\!\cdots\!37}{97\!\cdots\!70}a^{5}+\frac{32\!\cdots\!69}{48\!\cdots\!50}a^{4}+\frac{27\!\cdots\!43}{48\!\cdots\!85}a^{2}-\frac{53\!\cdots\!15}{19\!\cdots\!34}a$, $\frac{70\!\cdots\!26}{60\!\cdots\!25}a^{35}-\frac{33\!\cdots\!19}{48\!\cdots\!50}a^{34}+\frac{51\!\cdots\!38}{11\!\cdots\!75}a^{33}-\frac{18\!\cdots\!02}{60\!\cdots\!25}a^{32}+\frac{32\!\cdots\!94}{24\!\cdots\!25}a^{31}-\frac{20\!\cdots\!99}{23\!\cdots\!75}a^{30}+\frac{14\!\cdots\!69}{12\!\cdots\!50}a^{29}-\frac{16\!\cdots\!16}{24\!\cdots\!25}a^{28}+\frac{51\!\cdots\!74}{11\!\cdots\!75}a^{27}+\frac{89\!\cdots\!98}{60\!\cdots\!25}a^{26}-\frac{44\!\cdots\!09}{48\!\cdots\!50}a^{25}+\frac{68\!\cdots\!06}{11\!\cdots\!75}a^{24}+\frac{67\!\cdots\!98}{60\!\cdots\!25}a^{23}-\frac{32\!\cdots\!72}{48\!\cdots\!85}a^{22}+\frac{49\!\cdots\!62}{11\!\cdots\!75}a^{21}+\frac{71\!\cdots\!53}{12\!\cdots\!50}a^{20}-\frac{94\!\cdots\!44}{24\!\cdots\!25}a^{19}+\frac{58\!\cdots\!54}{23\!\cdots\!75}a^{18}+\frac{23\!\cdots\!88}{60\!\cdots\!25}a^{17}-\frac{61\!\cdots\!22}{24\!\cdots\!25}a^{16}+\frac{18\!\cdots\!28}{11\!\cdots\!75}a^{15}-\frac{28\!\cdots\!76}{55\!\cdots\!25}a^{14}+\frac{13\!\cdots\!71}{97\!\cdots\!17}a^{13}-\frac{10\!\cdots\!14}{11\!\cdots\!75}a^{12}+\frac{36\!\cdots\!21}{60\!\cdots\!25}a^{11}-\frac{65\!\cdots\!53}{24\!\cdots\!25}a^{10}+\frac{20\!\cdots\!44}{11\!\cdots\!75}a^{9}-\frac{57\!\cdots\!06}{48\!\cdots\!85}a^{8}-\frac{48\!\cdots\!99}{48\!\cdots\!50}a^{7}+\frac{74\!\cdots\!26}{11\!\cdots\!75}a^{6}+\frac{46\!\cdots\!50}{97\!\cdots\!17}a^{5}-\frac{16\!\cdots\!22}{24\!\cdots\!25}a^{4}+\frac{17\!\cdots\!27}{47\!\cdots\!15}a^{3}-\frac{82\!\cdots\!61}{97\!\cdots\!70}a^{2}-\frac{17\!\cdots\!90}{97\!\cdots\!17}a+\frac{10\!\cdots\!34}{94\!\cdots\!43}$, $\frac{70\!\cdots\!26}{60\!\cdots\!25}a^{35}+\frac{45\!\cdots\!71}{60\!\cdots\!50}a^{34}-\frac{39\!\cdots\!89}{17\!\cdots\!50}a^{33}-\frac{18\!\cdots\!02}{60\!\cdots\!25}a^{32}-\frac{91\!\cdots\!67}{60\!\cdots\!50}a^{31}+\frac{45\!\cdots\!64}{88\!\cdots\!75}a^{30}+\frac{14\!\cdots\!69}{12\!\cdots\!50}a^{29}+\frac{45\!\cdots\!87}{60\!\cdots\!50}a^{28}-\frac{39\!\cdots\!33}{17\!\cdots\!50}a^{27}+\frac{89\!\cdots\!98}{60\!\cdots\!25}a^{26}+\frac{60\!\cdots\!33}{60\!\cdots\!50}a^{25}-\frac{51\!\cdots\!47}{17\!\cdots\!50}a^{24}+\frac{67\!\cdots\!98}{60\!\cdots\!25}a^{23}+\frac{44\!\cdots\!83}{60\!\cdots\!50}a^{22}-\frac{19\!\cdots\!11}{88\!\cdots\!75}a^{21}+\frac{71\!\cdots\!53}{12\!\cdots\!50}a^{20}+\frac{25\!\cdots\!19}{60\!\cdots\!50}a^{19}-\frac{20\!\cdots\!71}{17\!\cdots\!50}a^{18}+\frac{23\!\cdots\!88}{60\!\cdots\!25}a^{17}+\frac{84\!\cdots\!24}{30\!\cdots\!25}a^{16}-\frac{66\!\cdots\!41}{88\!\cdots\!75}a^{15}-\frac{28\!\cdots\!76}{55\!\cdots\!25}a^{14}-\frac{51\!\cdots\!57}{30\!\cdots\!25}a^{13}+\frac{79\!\cdots\!82}{80\!\cdots\!75}a^{12}+\frac{36\!\cdots\!21}{60\!\cdots\!25}a^{11}+\frac{93\!\cdots\!08}{30\!\cdots\!25}a^{10}+\frac{33\!\cdots\!78}{88\!\cdots\!75}a^{9}-\frac{57\!\cdots\!06}{48\!\cdots\!85}a^{8}+\frac{44\!\cdots\!73}{48\!\cdots\!50}a^{7}+\frac{32\!\cdots\!09}{14\!\cdots\!70}a^{6}+\frac{46\!\cdots\!50}{97\!\cdots\!17}a^{5}+\frac{32\!\cdots\!69}{48\!\cdots\!50}a^{4}-\frac{13\!\cdots\!75}{14\!\cdots\!87}a^{3}-\frac{82\!\cdots\!61}{97\!\cdots\!70}a^{2}-\frac{53\!\cdots\!15}{19\!\cdots\!34}a+\frac{17\!\cdots\!13}{28\!\cdots\!74}$, $\frac{28\!\cdots\!99}{16\!\cdots\!75}a^{33}-\frac{22\!\cdots\!09}{67\!\cdots\!50}a^{30}+\frac{28\!\cdots\!77}{16\!\cdots\!75}a^{27}+\frac{37\!\cdots\!63}{16\!\cdots\!75}a^{24}+\frac{54\!\cdots\!77}{33\!\cdots\!50}a^{21}+\frac{32\!\cdots\!07}{33\!\cdots\!75}a^{18}+\frac{10\!\cdots\!44}{16\!\cdots\!75}a^{15}-\frac{60\!\cdots\!97}{16\!\cdots\!75}a^{12}+\frac{11\!\cdots\!12}{16\!\cdots\!75}a^{9}+\frac{41\!\cdots\!23}{16\!\cdots\!75}a^{6}+\frac{45\!\cdots\!41}{26\!\cdots\!26}a^{3}+\frac{60\!\cdots\!07}{13\!\cdots\!63}$, $\frac{41\!\cdots\!77}{91\!\cdots\!50}a^{34}-\frac{53\!\cdots\!02}{45\!\cdots\!75}a^{31}+\frac{20\!\cdots\!72}{45\!\cdots\!75}a^{28}+\frac{53\!\cdots\!71}{91\!\cdots\!50}a^{25}+\frac{20\!\cdots\!73}{45\!\cdots\!75}a^{22}+\frac{10\!\cdots\!89}{45\!\cdots\!75}a^{19}+\frac{69\!\cdots\!13}{45\!\cdots\!75}a^{16}-\frac{83\!\cdots\!26}{42\!\cdots\!75}a^{13}+\frac{10\!\cdots\!46}{45\!\cdots\!75}a^{10}-\frac{34\!\cdots\!37}{73\!\cdots\!50}a^{7}+\frac{27\!\cdots\!45}{14\!\cdots\!67}a^{4}-\frac{11\!\cdots\!45}{14\!\cdots\!67}a$, $\frac{26\!\cdots\!79}{12\!\cdots\!50}a^{35}+\frac{18\!\cdots\!27}{91\!\cdots\!50}a^{34}+\frac{80\!\cdots\!67}{30\!\cdots\!50}a^{33}-\frac{53\!\cdots\!59}{12\!\cdots\!50}a^{32}-\frac{37\!\cdots\!29}{91\!\cdots\!50}a^{31}-\frac{15\!\cdots\!68}{30\!\cdots\!75}a^{30}+\frac{53\!\cdots\!23}{24\!\cdots\!50}a^{29}+\frac{91\!\cdots\!97}{45\!\cdots\!75}a^{28}+\frac{80\!\cdots\!41}{30\!\cdots\!50}a^{27}+\frac{71\!\cdots\!89}{24\!\cdots\!50}a^{26}+\frac{24\!\cdots\!21}{91\!\cdots\!50}a^{25}+\frac{10\!\cdots\!79}{30\!\cdots\!50}a^{24}+\frac{26\!\cdots\!19}{12\!\cdots\!50}a^{23}+\frac{17\!\cdots\!21}{91\!\cdots\!50}a^{22}+\frac{39\!\cdots\!54}{15\!\cdots\!75}a^{21}+\frac{15\!\cdots\!83}{12\!\cdots\!50}a^{20}+\frac{51\!\cdots\!64}{45\!\cdots\!75}a^{19}+\frac{91\!\cdots\!31}{60\!\cdots\!50}a^{18}+\frac{49\!\cdots\!94}{60\!\cdots\!25}a^{17}+\frac{33\!\cdots\!13}{45\!\cdots\!75}a^{16}+\frac{14\!\cdots\!76}{15\!\cdots\!75}a^{15}-\frac{29\!\cdots\!37}{60\!\cdots\!25}a^{14}-\frac{21\!\cdots\!09}{45\!\cdots\!75}a^{13}-\frac{86\!\cdots\!38}{15\!\cdots\!75}a^{12}+\frac{54\!\cdots\!84}{60\!\cdots\!25}a^{11}+\frac{39\!\cdots\!46}{45\!\cdots\!75}a^{10}+\frac{15\!\cdots\!98}{15\!\cdots\!75}a^{9}+\frac{35\!\cdots\!79}{12\!\cdots\!50}a^{8}+\frac{13\!\cdots\!01}{73\!\cdots\!50}a^{7}+\frac{11\!\cdots\!59}{30\!\cdots\!50}a^{6}+\frac{18\!\cdots\!37}{97\!\cdots\!70}a^{5}+\frac{13\!\cdots\!53}{73\!\cdots\!50}a^{4}+\frac{27\!\cdots\!07}{12\!\cdots\!03}a^{3}-\frac{15\!\cdots\!75}{19\!\cdots\!34}a^{2}-\frac{11\!\cdots\!90}{14\!\cdots\!67}a-\frac{22\!\cdots\!75}{24\!\cdots\!06}$, $\frac{70\!\cdots\!26}{60\!\cdots\!25}a^{35}-\frac{21\!\cdots\!98}{30\!\cdots\!25}a^{34}+\frac{28\!\cdots\!09}{33\!\cdots\!50}a^{33}-\frac{18\!\cdots\!02}{60\!\cdots\!25}a^{32}+\frac{11\!\cdots\!67}{60\!\cdots\!50}a^{31}-\frac{10\!\cdots\!47}{67\!\cdots\!50}a^{30}+\frac{14\!\cdots\!69}{12\!\cdots\!50}a^{29}-\frac{42\!\cdots\!87}{60\!\cdots\!50}a^{28}+\frac{27\!\cdots\!07}{33\!\cdots\!50}a^{27}+\frac{89\!\cdots\!98}{60\!\cdots\!25}a^{26}-\frac{27\!\cdots\!04}{30\!\cdots\!25}a^{25}+\frac{37\!\cdots\!33}{33\!\cdots\!50}a^{24}+\frac{67\!\cdots\!98}{60\!\cdots\!25}a^{23}-\frac{40\!\cdots\!83}{60\!\cdots\!50}a^{22}+\frac{27\!\cdots\!91}{33\!\cdots\!50}a^{21}+\frac{71\!\cdots\!53}{12\!\cdots\!50}a^{20}-\frac{21\!\cdots\!19}{60\!\cdots\!50}a^{19}+\frac{32\!\cdots\!87}{67\!\cdots\!50}a^{18}+\frac{23\!\cdots\!88}{60\!\cdots\!25}a^{17}-\frac{71\!\cdots\!74}{30\!\cdots\!25}a^{16}+\frac{52\!\cdots\!52}{16\!\cdots\!75}a^{15}-\frac{28\!\cdots\!76}{55\!\cdots\!25}a^{14}+\frac{85\!\cdots\!98}{27\!\cdots\!25}a^{13}-\frac{23\!\cdots\!01}{16\!\cdots\!75}a^{12}+\frac{36\!\cdots\!21}{60\!\cdots\!25}a^{11}-\frac{11\!\cdots\!83}{30\!\cdots\!25}a^{10}+\frac{47\!\cdots\!96}{16\!\cdots\!75}a^{9}-\frac{57\!\cdots\!06}{48\!\cdots\!85}a^{8}+\frac{17\!\cdots\!63}{24\!\cdots\!25}a^{7}+\frac{53\!\cdots\!93}{33\!\cdots\!50}a^{6}+\frac{46\!\cdots\!50}{97\!\cdots\!17}a^{5}-\frac{56\!\cdots\!45}{19\!\cdots\!34}a^{4}+\frac{16\!\cdots\!53}{26\!\cdots\!26}a^{3}-\frac{82\!\cdots\!61}{97\!\cdots\!70}a^{2}+\frac{56\!\cdots\!95}{19\!\cdots\!34}a-\frac{66\!\cdots\!75}{26\!\cdots\!26}$, $\frac{20\!\cdots\!39}{91\!\cdots\!75}a^{35}+\frac{23\!\cdots\!51}{18\!\cdots\!50}a^{34}-\frac{94\!\cdots\!07}{33\!\cdots\!50}a^{33}-\frac{74\!\cdots\!23}{16\!\cdots\!50}a^{32}-\frac{31\!\cdots\!26}{91\!\cdots\!75}a^{31}+\frac{19\!\cdots\!78}{33\!\cdots\!75}a^{30}+\frac{20\!\cdots\!09}{91\!\cdots\!75}a^{29}+\frac{23\!\cdots\!47}{18\!\cdots\!50}a^{28}-\frac{94\!\cdots\!61}{33\!\cdots\!50}a^{27}+\frac{27\!\cdots\!11}{91\!\cdots\!75}a^{26}+\frac{29\!\cdots\!73}{18\!\cdots\!50}a^{25}-\frac{12\!\cdots\!59}{33\!\cdots\!50}a^{24}+\frac{39\!\cdots\!21}{18\!\cdots\!50}a^{23}+\frac{11\!\cdots\!99}{91\!\cdots\!75}a^{22}-\frac{45\!\cdots\!84}{16\!\cdots\!75}a^{21}+\frac{11\!\cdots\!97}{91\!\cdots\!75}a^{20}+\frac{11\!\cdots\!39}{18\!\cdots\!50}a^{19}-\frac{10\!\cdots\!01}{67\!\cdots\!50}a^{18}+\frac{60\!\cdots\!71}{73\!\cdots\!35}a^{17}+\frac{38\!\cdots\!19}{91\!\cdots\!75}a^{16}-\frac{17\!\cdots\!96}{16\!\cdots\!75}a^{15}-\frac{89\!\cdots\!09}{18\!\cdots\!75}a^{14}-\frac{46\!\cdots\!38}{84\!\cdots\!75}a^{13}+\frac{10\!\cdots\!98}{16\!\cdots\!75}a^{12}+\frac{81\!\cdots\!11}{91\!\cdots\!75}a^{11}+\frac{10\!\cdots\!48}{91\!\cdots\!75}a^{10}-\frac{19\!\cdots\!08}{16\!\cdots\!75}a^{9}+\frac{26\!\cdots\!52}{91\!\cdots\!75}a^{8}-\frac{18\!\cdots\!31}{14\!\cdots\!70}a^{7}-\frac{12\!\cdots\!39}{33\!\cdots\!50}a^{6}+\frac{28\!\cdots\!87}{14\!\cdots\!70}a^{5}+\frac{76\!\cdots\!75}{14\!\cdots\!67}a^{4}-\frac{31\!\cdots\!97}{13\!\cdots\!63}a^{3}-\frac{74\!\cdots\!66}{73\!\cdots\!35}a^{2}+\frac{55\!\cdots\!75}{29\!\cdots\!34}a-\frac{92\!\cdots\!63}{26\!\cdots\!26}$, $\frac{48\!\cdots\!91}{18\!\cdots\!50}a^{35}+\frac{17\!\cdots\!69}{91\!\cdots\!50}a^{34}-\frac{11\!\cdots\!63}{33\!\cdots\!50}a^{33}-\frac{46\!\cdots\!58}{91\!\cdots\!75}a^{32}-\frac{22\!\cdots\!19}{45\!\cdots\!75}a^{31}+\frac{47\!\cdots\!79}{67\!\cdots\!50}a^{30}+\frac{96\!\cdots\!79}{36\!\cdots\!50}a^{29}+\frac{84\!\cdots\!09}{45\!\cdots\!75}a^{28}-\frac{57\!\cdots\!12}{16\!\cdots\!75}a^{27}+\frac{12\!\cdots\!49}{36\!\cdots\!50}a^{26}+\frac{21\!\cdots\!87}{91\!\cdots\!50}a^{25}-\frac{15\!\cdots\!81}{33\!\cdots\!50}a^{24}+\frac{23\!\cdots\!93}{91\!\cdots\!75}a^{23}+\frac{81\!\cdots\!06}{45\!\cdots\!75}a^{22}-\frac{11\!\cdots\!87}{33\!\cdots\!50}a^{21}+\frac{27\!\cdots\!67}{18\!\cdots\!50}a^{20}+\frac{43\!\cdots\!58}{45\!\cdots\!75}a^{19}-\frac{64\!\cdots\!67}{33\!\cdots\!75}a^{18}+\frac{89\!\cdots\!66}{91\!\cdots\!75}a^{17}+\frac{28\!\cdots\!61}{45\!\cdots\!75}a^{16}-\frac{21\!\cdots\!14}{16\!\cdots\!75}a^{15}-\frac{46\!\cdots\!93}{91\!\cdots\!75}a^{14}-\frac{34\!\cdots\!22}{42\!\cdots\!75}a^{13}+\frac{13\!\cdots\!07}{16\!\cdots\!75}a^{12}+\frac{94\!\cdots\!96}{91\!\cdots\!75}a^{11}+\frac{45\!\cdots\!12}{45\!\cdots\!75}a^{10}-\frac{24\!\cdots\!22}{16\!\cdots\!75}a^{9}+\frac{75\!\cdots\!11}{18\!\cdots\!50}a^{8}-\frac{13\!\cdots\!89}{73\!\cdots\!50}a^{7}-\frac{11\!\cdots\!51}{33\!\cdots\!50}a^{6}+\frac{19\!\cdots\!29}{73\!\cdots\!35}a^{5}+\frac{11\!\cdots\!40}{14\!\cdots\!67}a^{4}-\frac{87\!\cdots\!71}{26\!\cdots\!26}a^{3}+\frac{27\!\cdots\!57}{29\!\cdots\!34}a^{2}-\frac{97\!\cdots\!90}{14\!\cdots\!67}a+\frac{31\!\cdots\!88}{13\!\cdots\!63}$, $\frac{50\!\cdots\!43}{18\!\cdots\!50}a^{35}-\frac{24\!\cdots\!99}{45\!\cdots\!75}a^{34}-\frac{39\!\cdots\!49}{23\!\cdots\!50}a^{33}-\frac{98\!\cdots\!72}{18\!\cdots\!75}a^{32}+\frac{51\!\cdots\!23}{45\!\cdots\!75}a^{31}+\frac{76\!\cdots\!91}{23\!\cdots\!75}a^{30}+\frac{25\!\cdots\!07}{91\!\cdots\!75}a^{29}-\frac{24\!\cdots\!78}{45\!\cdots\!75}a^{28}-\frac{39\!\cdots\!27}{23\!\cdots\!50}a^{27}+\frac{67\!\cdots\!41}{18\!\cdots\!50}a^{26}-\frac{32\!\cdots\!02}{45\!\cdots\!75}a^{25}-\frac{52\!\cdots\!13}{23\!\cdots\!50}a^{24}+\frac{24\!\cdots\!91}{91\!\cdots\!75}a^{23}-\frac{23\!\cdots\!77}{45\!\cdots\!75}a^{22}-\frac{19\!\cdots\!88}{11\!\cdots\!75}a^{21}+\frac{28\!\cdots\!37}{18\!\cdots\!75}a^{20}-\frac{13\!\cdots\!36}{45\!\cdots\!75}a^{19}-\frac{44\!\cdots\!97}{47\!\cdots\!50}a^{18}+\frac{93\!\cdots\!54}{91\!\cdots\!75}a^{17}-\frac{89\!\cdots\!87}{45\!\cdots\!75}a^{16}-\frac{72\!\cdots\!72}{11\!\cdots\!75}a^{15}-\frac{51\!\cdots\!77}{91\!\cdots\!75}a^{14}+\frac{62\!\cdots\!41}{45\!\cdots\!75}a^{13}+\frac{40\!\cdots\!36}{11\!\cdots\!75}a^{12}+\frac{99\!\cdots\!67}{91\!\cdots\!75}a^{11}-\frac{10\!\cdots\!29}{45\!\cdots\!75}a^{10}-\frac{77\!\cdots\!06}{11\!\cdots\!75}a^{9}+\frac{73\!\cdots\!11}{18\!\cdots\!50}a^{8}-\frac{91\!\cdots\!13}{18\!\cdots\!75}a^{7}-\frac{56\!\cdots\!73}{23\!\cdots\!50}a^{6}+\frac{19\!\cdots\!79}{73\!\cdots\!35}a^{5}-\frac{15\!\cdots\!39}{36\!\cdots\!75}a^{4}-\frac{67\!\cdots\!92}{47\!\cdots\!15}a^{3}+\frac{54\!\cdots\!87}{73\!\cdots\!35}a^{2}+\frac{67\!\cdots\!50}{14\!\cdots\!67}a-\frac{19\!\cdots\!43}{18\!\cdots\!86}$, $\frac{68\!\cdots\!98}{45\!\cdots\!75}a^{35}-\frac{48\!\cdots\!82}{45\!\cdots\!75}a^{34}+\frac{51\!\cdots\!01}{11\!\cdots\!50}a^{33}-\frac{13\!\cdots\!01}{45\!\cdots\!75}a^{32}+\frac{19\!\cdots\!53}{91\!\cdots\!50}a^{31}-\frac{50\!\cdots\!71}{59\!\cdots\!75}a^{30}+\frac{68\!\cdots\!41}{45\!\cdots\!75}a^{29}-\frac{97\!\cdots\!83}{91\!\cdots\!50}a^{28}+\frac{51\!\cdots\!77}{11\!\cdots\!50}a^{27}+\frac{90\!\cdots\!69}{45\!\cdots\!75}a^{26}-\frac{65\!\cdots\!61}{45\!\cdots\!75}a^{25}+\frac{68\!\cdots\!43}{11\!\cdots\!50}a^{24}+\frac{66\!\cdots\!39}{45\!\cdots\!75}a^{23}-\frac{94\!\cdots\!97}{91\!\cdots\!50}a^{22}+\frac{24\!\cdots\!89}{59\!\cdots\!75}a^{21}+\frac{38\!\cdots\!82}{45\!\cdots\!75}a^{20}-\frac{55\!\cdots\!71}{91\!\cdots\!50}a^{19}+\frac{29\!\cdots\!19}{11\!\cdots\!50}a^{18}+\frac{25\!\cdots\!79}{45\!\cdots\!75}a^{17}-\frac{18\!\cdots\!16}{45\!\cdots\!75}a^{16}+\frac{95\!\cdots\!89}{59\!\cdots\!75}a^{15}-\frac{16\!\cdots\!72}{45\!\cdots\!75}a^{14}+\frac{10\!\cdots\!63}{45\!\cdots\!75}a^{13}-\frac{54\!\cdots\!52}{59\!\cdots\!75}a^{12}+\frac{28\!\cdots\!53}{45\!\cdots\!75}a^{11}-\frac{19\!\cdots\!72}{45\!\cdots\!75}a^{10}+\frac{10\!\cdots\!78}{59\!\cdots\!75}a^{9}+\frac{15\!\cdots\!74}{91\!\cdots\!75}a^{8}-\frac{55\!\cdots\!41}{36\!\cdots\!75}a^{7}+\frac{14\!\cdots\!27}{23\!\cdots\!50}a^{6}+\frac{44\!\cdots\!82}{36\!\cdots\!75}a^{5}-\frac{67\!\cdots\!71}{73\!\cdots\!50}a^{4}+\frac{17\!\cdots\!02}{47\!\cdots\!15}a^{3}-\frac{97\!\cdots\!68}{73\!\cdots\!35}a^{2}+\frac{10\!\cdots\!35}{29\!\cdots\!34}a-\frac{95\!\cdots\!89}{18\!\cdots\!86}$, $\frac{21\!\cdots\!47}{18\!\cdots\!50}a^{35}-\frac{53\!\cdots\!73}{45\!\cdots\!75}a^{34}+\frac{21\!\cdots\!26}{31\!\cdots\!31}a^{33}-\frac{41\!\cdots\!31}{18\!\cdots\!50}a^{32}+\frac{10\!\cdots\!71}{45\!\cdots\!75}a^{31}-\frac{54\!\cdots\!23}{31\!\cdots\!31}a^{30}+\frac{10\!\cdots\!79}{91\!\cdots\!75}a^{29}-\frac{53\!\cdots\!06}{45\!\cdots\!75}a^{28}+\frac{21\!\cdots\!78}{31\!\cdots\!31}a^{27}+\frac{29\!\cdots\!67}{18\!\cdots\!50}a^{26}-\frac{71\!\cdots\!04}{45\!\cdots\!75}a^{25}+\frac{26\!\cdots\!30}{31\!\cdots\!31}a^{24}+\frac{42\!\cdots\!41}{36\!\cdots\!50}a^{23}-\frac{52\!\cdots\!04}{45\!\cdots\!75}a^{22}+\frac{20\!\cdots\!03}{31\!\cdots\!31}a^{21}+\frac{62\!\cdots\!16}{91\!\cdots\!75}a^{20}-\frac{30\!\cdots\!47}{45\!\cdots\!75}a^{19}+\frac{10\!\cdots\!09}{31\!\cdots\!31}a^{18}+\frac{40\!\cdots\!84}{91\!\cdots\!75}a^{17}-\frac{19\!\cdots\!24}{45\!\cdots\!75}a^{16}+\frac{70\!\cdots\!64}{31\!\cdots\!31}a^{15}-\frac{19\!\cdots\!52}{91\!\cdots\!75}a^{14}+\frac{11\!\cdots\!32}{45\!\cdots\!75}a^{13}-\frac{92\!\cdots\!00}{31\!\cdots\!31}a^{12}+\frac{83\!\cdots\!27}{18\!\cdots\!75}a^{11}-\frac{21\!\cdots\!58}{45\!\cdots\!75}a^{10}+\frac{11\!\cdots\!25}{31\!\cdots\!31}a^{9}+\frac{36\!\cdots\!23}{18\!\cdots\!50}a^{8}-\frac{28\!\cdots\!28}{18\!\cdots\!75}a^{7}-\frac{21\!\cdots\!00}{31\!\cdots\!31}a^{6}+\frac{87\!\cdots\!89}{73\!\cdots\!50}a^{5}-\frac{40\!\cdots\!36}{36\!\cdots\!75}a^{4}+\frac{87\!\cdots\!25}{31\!\cdots\!31}a^{3}+\frac{64\!\cdots\!09}{73\!\cdots\!35}a^{2}+\frac{38\!\cdots\!48}{14\!\cdots\!67}a-\frac{44\!\cdots\!29}{31\!\cdots\!31}$, $\frac{21\!\cdots\!47}{18\!\cdots\!50}a^{35}+\frac{29\!\cdots\!74}{45\!\cdots\!75}a^{34}+\frac{33\!\cdots\!09}{33\!\cdots\!50}a^{33}-\frac{41\!\cdots\!31}{18\!\cdots\!50}a^{32}-\frac{55\!\cdots\!48}{45\!\cdots\!75}a^{31}-\frac{12\!\cdots\!47}{67\!\cdots\!50}a^{30}+\frac{10\!\cdots\!79}{91\!\cdots\!75}a^{29}+\frac{29\!\cdots\!28}{45\!\cdots\!75}a^{28}+\frac{32\!\cdots\!07}{33\!\cdots\!50}a^{27}+\frac{29\!\cdots\!67}{18\!\cdots\!50}a^{26}+\frac{39\!\cdots\!02}{45\!\cdots\!75}a^{25}+\frac{44\!\cdots\!33}{33\!\cdots\!50}a^{24}+\frac{42\!\cdots\!41}{36\!\cdots\!50}a^{23}+\frac{28\!\cdots\!27}{45\!\cdots\!75}a^{22}+\frac{32\!\cdots\!91}{33\!\cdots\!50}a^{21}+\frac{62\!\cdots\!16}{91\!\cdots\!75}a^{20}+\frac{53\!\cdots\!81}{14\!\cdots\!25}a^{19}+\frac{37\!\cdots\!37}{67\!\cdots\!50}a^{18}+\frac{40\!\cdots\!84}{91\!\cdots\!75}a^{17}+\frac{10\!\cdots\!37}{45\!\cdots\!75}a^{16}+\frac{61\!\cdots\!52}{16\!\cdots\!75}a^{15}-\frac{19\!\cdots\!52}{91\!\cdots\!75}a^{14}-\frac{17\!\cdots\!61}{14\!\cdots\!25}a^{13}-\frac{34\!\cdots\!01}{16\!\cdots\!75}a^{12}+\frac{83\!\cdots\!27}{18\!\cdots\!75}a^{11}+\frac{11\!\cdots\!29}{45\!\cdots\!75}a^{10}+\frac{65\!\cdots\!46}{16\!\cdots\!75}a^{9}+\frac{36\!\cdots\!23}{18\!\cdots\!50}a^{8}+\frac{38\!\cdots\!43}{36\!\cdots\!75}a^{7}+\frac{47\!\cdots\!93}{33\!\cdots\!50}a^{6}+\frac{87\!\cdots\!89}{73\!\cdots\!50}a^{5}+\frac{24\!\cdots\!97}{36\!\cdots\!75}a^{4}+\frac{16\!\cdots\!53}{26\!\cdots\!26}a^{3}+\frac{64\!\cdots\!09}{73\!\cdots\!35}a^{2}+\frac{29\!\cdots\!02}{14\!\cdots\!67}a+\frac{70\!\cdots\!37}{26\!\cdots\!26}$, $\frac{21\!\cdots\!47}{18\!\cdots\!50}a^{35}+\frac{24\!\cdots\!99}{45\!\cdots\!75}a^{34}+\frac{23\!\cdots\!79}{33\!\cdots\!50}a^{33}-\frac{41\!\cdots\!31}{18\!\cdots\!50}a^{32}-\frac{51\!\cdots\!23}{45\!\cdots\!75}a^{31}-\frac{46\!\cdots\!91}{33\!\cdots\!75}a^{30}+\frac{10\!\cdots\!79}{91\!\cdots\!75}a^{29}+\frac{24\!\cdots\!78}{45\!\cdots\!75}a^{28}+\frac{11\!\cdots\!46}{16\!\cdots\!75}a^{27}+\frac{29\!\cdots\!67}{18\!\cdots\!50}a^{26}+\frac{32\!\cdots\!02}{45\!\cdots\!75}a^{25}+\frac{31\!\cdots\!73}{33\!\cdots\!50}a^{24}+\frac{42\!\cdots\!41}{36\!\cdots\!50}a^{23}+\frac{23\!\cdots\!77}{45\!\cdots\!75}a^{22}+\frac{11\!\cdots\!23}{16\!\cdots\!75}a^{21}+\frac{62\!\cdots\!16}{91\!\cdots\!75}a^{20}+\frac{13\!\cdots\!36}{45\!\cdots\!75}a^{19}+\frac{13\!\cdots\!36}{33\!\cdots\!75}a^{18}+\frac{40\!\cdots\!84}{91\!\cdots\!75}a^{17}+\frac{89\!\cdots\!87}{45\!\cdots\!75}a^{16}+\frac{43\!\cdots\!62}{16\!\cdots\!75}a^{15}-\frac{19\!\cdots\!52}{91\!\cdots\!75}a^{14}-\frac{62\!\cdots\!41}{45\!\cdots\!75}a^{13}-\frac{25\!\cdots\!06}{16\!\cdots\!75}a^{12}+\frac{83\!\cdots\!27}{18\!\cdots\!75}a^{11}+\frac{10\!\cdots\!29}{45\!\cdots\!75}a^{10}+\frac{47\!\cdots\!76}{16\!\cdots\!75}a^{9}+\frac{36\!\cdots\!23}{18\!\cdots\!50}a^{8}+\frac{91\!\cdots\!13}{18\!\cdots\!75}a^{7}+\frac{29\!\cdots\!83}{33\!\cdots\!50}a^{6}+\frac{87\!\cdots\!89}{73\!\cdots\!50}a^{5}+\frac{15\!\cdots\!39}{36\!\cdots\!75}a^{4}+\frac{82\!\cdots\!59}{13\!\cdots\!63}a^{3}+\frac{64\!\cdots\!09}{73\!\cdots\!35}a^{2}-\frac{67\!\cdots\!50}{14\!\cdots\!67}a-\frac{33\!\cdots\!00}{13\!\cdots\!63}$, $\frac{56\!\cdots\!87}{91\!\cdots\!75}a^{35}-\frac{29\!\cdots\!74}{45\!\cdots\!75}a^{34}-\frac{15\!\cdots\!28}{59\!\cdots\!75}a^{33}-\frac{44\!\cdots\!67}{36\!\cdots\!50}a^{32}+\frac{55\!\cdots\!48}{45\!\cdots\!75}a^{31}+\frac{31\!\cdots\!96}{59\!\cdots\!75}a^{30}+\frac{11\!\cdots\!77}{18\!\cdots\!50}a^{29}-\frac{29\!\cdots\!28}{45\!\cdots\!75}a^{28}-\frac{15\!\cdots\!21}{59\!\cdots\!75}a^{27}+\frac{75\!\cdots\!94}{91\!\cdots\!75}a^{26}-\frac{39\!\cdots\!02}{45\!\cdots\!75}a^{25}-\frac{21\!\cdots\!89}{59\!\cdots\!75}a^{24}+\frac{11\!\cdots\!01}{18\!\cdots\!50}a^{23}-\frac{28\!\cdots\!27}{45\!\cdots\!75}a^{22}-\frac{15\!\cdots\!49}{59\!\cdots\!75}a^{21}+\frac{12\!\cdots\!07}{36\!\cdots\!50}a^{20}-\frac{53\!\cdots\!81}{14\!\cdots\!25}a^{19}-\frac{90\!\cdots\!97}{59\!\cdots\!75}a^{18}+\frac{21\!\cdots\!22}{91\!\cdots\!75}a^{17}-\frac{10\!\cdots\!37}{45\!\cdots\!75}a^{16}-\frac{58\!\cdots\!29}{59\!\cdots\!75}a^{15}-\frac{11\!\cdots\!11}{91\!\cdots\!75}a^{14}+\frac{17\!\cdots\!61}{14\!\cdots\!25}a^{13}+\frac{31\!\cdots\!08}{54\!\cdots\!75}a^{12}+\frac{22\!\cdots\!31}{91\!\cdots\!75}a^{11}-\frac{11\!\cdots\!29}{45\!\cdots\!75}a^{10}-\frac{62\!\cdots\!48}{59\!\cdots\!75}a^{9}+\frac{82\!\cdots\!49}{91\!\cdots\!75}a^{8}-\frac{38\!\cdots\!43}{36\!\cdots\!75}a^{7}-\frac{45\!\cdots\!77}{11\!\cdots\!75}a^{6}+\frac{77\!\cdots\!69}{14\!\cdots\!70}a^{5}-\frac{24\!\cdots\!97}{36\!\cdots\!75}a^{4}-\frac{21\!\cdots\!42}{94\!\cdots\!43}a^{3}+\frac{24\!\cdots\!07}{14\!\cdots\!70}a^{2}-\frac{29\!\cdots\!02}{14\!\cdots\!67}a+\frac{14\!\cdots\!66}{94\!\cdots\!43}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 478341710831896.44 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{18}\cdot 478341710831896.44 \cdot 9604}{18\cdot\sqrt{120406044167774900818448125272170303354510035249351535797119140625}}\cr\approx \mathstrut & 0.171329199239926 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^36 - 2*x^33 + 997*x^30 + 13298*x^27 + 969798*x^24 + 5639039*x^21 + 36900263*x^18 - 22224984*x^15 + 40530596*x^12 + 12785625*x^9 + 8883000*x^6 - 359375*x^3 + 15625)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^36 - 2*x^33 + 997*x^30 + 13298*x^27 + 969798*x^24 + 5639039*x^21 + 36900263*x^18 - 22224984*x^15 + 40530596*x^12 + 12785625*x^9 + 8883000*x^6 - 359375*x^3 + 15625, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^36 - 2*x^33 + 997*x^30 + 13298*x^27 + 969798*x^24 + 5639039*x^21 + 36900263*x^18 - 22224984*x^15 + 40530596*x^12 + 12785625*x^9 + 8883000*x^6 - 359375*x^3 + 15625);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^36 - 2*x^33 + 997*x^30 + 13298*x^27 + 969798*x^24 + 5639039*x^21 + 36900263*x^18 - 22224984*x^15 + 40530596*x^12 + 12785625*x^9 + 8883000*x^6 - 359375*x^3 + 15625);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6^2$ (as 36T4):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 36
The 36 conjugacy class representatives for $C_6^2$
Character table for $C_6^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 3.3.13689.1, 3.3.169.1, 3.3.13689.2, \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\zeta_{9})\), 6.0.562166163.2, 6.0.771147.1, 6.0.562166163.1, 6.0.2460375.1, 6.6.820125.1, 6.0.70270770375.5, 6.6.23423590125.1, 6.0.96393375.1, 6.6.3570125.1, 6.0.70270770375.7, 6.6.23423590125.2, 9.9.2565164201769.1, 12.0.6053445140625.1, 12.0.4937981169095977640625.1, 12.0.9291682743890625.1, 12.0.4937981169095977640625.2, 18.0.177661819315004155453692747.1, 18.0.346995740849617491120493646484375.1, 18.18.12851694105541388560018283203125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{6}$ R R ${\href{/padicField/7.6.0.1}{6} }^{6}$ ${\href{/padicField/11.6.0.1}{6} }^{6}$ R ${\href{/padicField/17.6.0.1}{6} }^{6}$ ${\href{/padicField/19.3.0.1}{3} }^{12}$ ${\href{/padicField/23.6.0.1}{6} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{6}$ ${\href{/padicField/31.3.0.1}{3} }^{12}$ ${\href{/padicField/37.6.0.1}{6} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{6}$ ${\href{/padicField/53.2.0.1}{2} }^{18}$ ${\href{/padicField/59.6.0.1}{6} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $36$$6$$6$$54$
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(13\) Copy content Toggle raw display 13.18.12.1$x^{18} + 108 x^{15} + 33 x^{14} + 33 x^{13} + 1281 x^{12} - 5346 x^{11} - 11418 x^{10} - 28704 x^{9} - 87582 x^{8} + 106161 x^{7} - 156430 x^{6} + 774708 x^{5} + 2861892 x^{4} + 1657140 x^{3} + 11807367 x^{2} - 7119552 x + 26092724$$3$$6$$12$$C_6 \times C_3$$[\ ]_{3}^{6}$
13.18.12.1$x^{18} + 108 x^{15} + 33 x^{14} + 33 x^{13} + 1281 x^{12} - 5346 x^{11} - 11418 x^{10} - 28704 x^{9} - 87582 x^{8} + 106161 x^{7} - 156430 x^{6} + 774708 x^{5} + 2861892 x^{4} + 1657140 x^{3} + 11807367 x^{2} - 7119552 x + 26092724$$3$$6$$12$$C_6 \times C_3$$[\ ]_{3}^{6}$